Hardware Locality (hwloc)
2.12.1rc

Generated by Doxygen 1.9.8

1 Hardware Locality

1.1 Tableof Contents
1.2 hwloc Overview
1.3 Command-line Examples
1.4 Programming Interface

1.4.1 Portability

1.4.2 APl Example
1.5 QuestionsandBugs
1.6 History / Credits

2 Installation
2.1 Basic Installation
2.2 Optional Dependencies

2.3 Installing from a Gitclone

3 Compiling software on top of hwloc's C API
3.1 Compiling on top of hwloc's C APIwithGNUMake,
3.2 Compiling on top of hwloc's C APIwithCMake e

4 Terms and Definitions
410bjects
42IndexesandSets

4.3 Hierarchy, Tree and Levels

5 Command-Line Tools
5.1 Istopo and Istopo-no-graphics
52hwloc-bind
53hwloc-calc
5.4 hwloc-info
5.5 hwloc-distrib
56hwlocps

5.7 hwloc-annotate

5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

5.9 hwloc-dump-hwdata

5.10 hwloc-gather-topology and hwloc-gather-cpuid L

6 Environment Variables

7 CPU and Memory Binding Overview
7.1 Binding Policies and Portability
7.2 Joint CPU and Memory Binding (or not)

11
11
11
12

13
13
13

15
15
15
16

19
19
19
19
20
20
20
20
20
20
21

23

Generated by Doxygen

7.3 Current Memory Binding Policy L 28

8 1/0 Devices 29
8.1 Enabling and requirements L e 29
8.21/00bjeCts e 29
8.30S deviCeS e 30
8.4 PCldevicesand bridges 31
8.5 Consulting I/O devicesand binding e 31
8.6 Examples e 31

9 Miscellaneous objects 35
9.1 Misc objects added by hwloc 35
9.2 Annotating topologies with Misc objects L 35

10 Object attributes 37
10.1 Normal attributes e 37
10.2 Customstring infos L L e 38
10.2.1 Hardware Platform Information 38

10.2.2 Operating System Information L 38

10.2.3 hwloc Information e 38

10.2.4 CPU Information 39

10.2.5 0S Device Information 39

10.2.6 Other Object-specific Information 41

10.2.7 User-Given Information L e 41

11 Topology Attributes: Distances, Memory Attributes and CPU Kinds 43
111 DIstances L e e 43
11.2 Memory Attributes L e e e 44
113 CPUKINGAS o e 44

12 Heterogeneous Memory 47
12.1 Memory Tiers and Default nodes 47
12.2 Using Heterogeneous Memory from the command-line 48
12.3 Using Heterogeneous Memory fromthe CAPI 49
12.3.1 Iterating over the list of (heterogeneous) NUMA nodes 49

12.3.2 lterating over local (heterogeneous) NUMA nodes 49

13 Importing and exporting topologies from/to XML files 51
13.1 libxml2 and minimalistic XML backends L 51
13.2 XML import error management e e e e 52

14 Synthetic topologies 53

Generated by Doxygen

14.1 Synthetic description string L
14.2 Loading a synthetictopology e e e e
14.3 Exporting a topology as a syntheticstring L

15 Interoperability With Other Software

16 Thread Safety

17 Components and plugins
17.1 Components enabled by default
17.2 Selecting which componentstouse
17.3 Loading components from plugins L

17.4 Existing components and plugins L Lo e e e

18 Embedding hwloc in Other Software
18.1 Using hwloc's M4 Embedding Capabilities
18.2 Example Embedding hwloc e

19 Frequently Asked Questions (FAQ)

19.1.6 What are these Group objects in my topology?
19.1.7 What happens if my topology is asymmetric?
19.1.8 What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the

19.2.1 | do not want hwloc to rediscover my enormous machine topology every time | rerun a process . .

19.2.2 How many topologies may | use in my program?o

19.2.4 How do | annotate the topology with private notes?
19.2.5 How do | create a custom heterogeneous and asymmetric topology?
19.3Caveats
19.3.1 Why is Istopo Slow? e
19.3.2 Does hwloc require privileged access? L
19.3.3 What should | do when hwloc reports "operating system" warnings?

19.3.4 Why does Valgrind complain about hwloc memory leaks?

53
54
54

55

57

59
59
59
60
60

63
63
64

67
67
67
67
68

. 68

69
69
70

72

Generated by Doxygen

19.4 Platform-specific e 75
19.4.1 How do | enable ROCm SMI and select which versiontouse? 75
19.4.2 How do | enable CUDA and select which CUDA versiontouse? 75
19.4.3 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor? 76
19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor? 76
19.4.5 How do | build hwloc for BlueGene/Q? 76
19.4.6 How do | build hwloc for Windows? 77
19.4.7 How to get useful topology information on NetBSD? 77
19.4.8 Why does binding fail on AIX? 77

19.5 Compatibility between hwloc versions 77
19.5.1 How do | handle APl changes? e 77
19.5.2 What is the difference between API and library version numbers? 78
19.5.3 How do I handle ABl breaks? e 78
19.5.4 Are XML topology files compatible between hwloc releases? 79
19.5.5 Are synthetic strings compatible between hwloc releases? 79
19.5.6 Is it possible to share a shared-memory topology between different hwloc releases? 79

20 Upgrading to the hwloc 2.0 API 81

20.1 New Organization of NUMA nodes and Memory i 81
20.1.1 Memory children L 81
20.1.2 Examples L e 81
20.1.3NUMA level anddepth o e 82
20.1.4 Finding Local NUMA nodes and looking at Childrenand Parents 82

20.2 4 Kinds of Objects and Children e 83
20.2.11/0Oand Misc children e 83
20.2.2Kindsof objects 83

20.3 HWLOC_OBJ_CACHE replaced o o e e e e e e e e e e e e e 84

20.4 allowed_cpuset and allowed_nodeset only in the maintopology 84

20.5 Object depths are now signed int L 84

20.6 Memory attributes become NUMANode-specific 84

20.7 Topology configuration changes o e 84

20.8 XML changes e e e e 85

20.9 Distances APl totally rewritten L 85

20.10 Return values of functions L L 85

20.11 Misc APl changes e 86

20.12 APl removals and deprecations e 86

21 Topic Index 87

211 TOPICS . o o o o e e e e 87

Generated by Doxygen

22 Data Structure Index
22.1 Data Structures e e e

23 Topic Documentation

23.1 Errorreporting inthe APL. L o e
232 APIVEISION o e e e
23.2.1 Detailed Description e
23.2.2 Macro Definition Documentation L L
23.2.2.1 HWLOC_API_VERSION

23.2.22 HWLOC_COMPONENT_ABI e e e

23.2.3 Function Documentation L
23.2.3.1 hwloc_get_api_version() e

23.3 Object Sets (hwloc_cpuset tand hwloc_nodeset t)
23.3.1 Detailed Description e
23.3.2 Typedef Documentation e e
23.3.21 hwloc_const_cpuset_t
23.3.2.2hwloc_const_ nodeset t e

23.3.23 hwloc_cpuset_t L

23.3.24 hwloc_nodeset t e e

23.4 0bjeCt TYPES . . . o o o e e e
23.4.1 Detailed Description e e
23.4.2 Macro Definition Documentation L L L
23.421 HWLOC_TYPE_UNORDERED e e e

23.4.3 Typedef Documentation e e e
23.4.3.1 hwloc_obj_bridge_type t
23.4.32hwloc_obj_cache type t

23.4.33 hwloc_obj_osdev_type t

23.4.4 Enumeration Type Documentation L e
23.4.4.1 hwloc_obj_bridge type_ e L

23.4.42 hwloc_obj_cache type e

23.4.43 hwloc_obj_osdev_type_e e
23.4.4.4hwloc_obj_type t L

23.4.5 Function Documentation L L e e
23.4.5.1 hwloc_compare_types()

23.5 Object Structure and Attributes L e
23.5.1 Detailed Description e
23.5.2 Typedef Documentation
23.5.21 hwloc_obj_t

23.6 Topology Creation and Destruction e

89
89

Generated by Doxygen

23.6.1 Detailed Description e e 98

23.6.2 Typedef Documentation L 98
23.6.2.1 hwloc_topology t 98

23.6.3 Function Documentation e 98
23.6.3.1 hwloc_topology_abi_check() 98
23.6.3.2 hwloc_topology_check() 98
23.6.3.3 hwloc_topology_destroy() o e 99
23.6.3.4 hwloc_topology_dup() o 929
23.6.3.5 hwloc_topology_init() 99
23.6.3.6 hwloc_topology_load() o e 99

23.7 Object levels, depths and types 100
23.7.1 Detailed Description e e 100
23.7.2 Enumeration Type Documentation 101
23.7.2.1 hwloc_get_type depth_e L 101

23.7.3 Function Documentation 101
23.7.3.1 hwloc_get_depth_type() o o 101
23.7.3.2 hwloc_get_memory_parents_depth() 101
23.7.3.3 hwloc_get_nbobjs_by_depth() 102
23.7.3.4 hwloc_get_nbobjs_by_type() 102
23.7.3.5 hwloc_get_next_ obj_by depth() 102
23.7.3.6 hwloc_get_next_obj_by type() 102
23.7.3.7 hwloc_get_obj_by depth() 103
23.7.3.8 hwloc_get_obj_by type()« 103
23.7.3.9 hwloc_get_root_obj() 103
23.7.3.10 hwloc_get_type depth() 103
23.7.3.11 hwloc_get_type_or_above depth() 104
23.7.3.12 hwloc_get_type_or_below depth(). o 104
23.7.3.13 hwloc_topology_get_depth() 104

23.8 Converting between Object Types and Attributes, and Strings 104
23.8.1 Detailed Description e 105
23.8.2 Function Documentation L L 105
23.8.2.1 hwloc_obj_attr_snprintf() 105
23.8.2.2 hwloc_obj_type_snprintf() 105
23.8.2.3 hwloc_obj_type_string() 105
23.8.2.4 hwloc_type_sscanf() o 106
23.8.2.5 hwloc_type_sscanf_as depth() 106

23.9 Consulting and Adding Info Attributes 107
23.9.1 Detailed Description e e 107
23.9.2 Function Documentation L L e e 107

Generated by Doxygen

vii

23.9.2.1 hwloc_obj_add_info() 107
23.9.2.2 hwloc_obj_get_info_by name() 107
23.9.2.3 hwloc_obj_set_subtype() 107

2310 CPUDbINAING 108
23.10.1 Detailed Description e e e e e 108
23.10.2 Enumeration Type Documentation L L 109
23.10.2.1 hwloc_cpubind_flags_t L 109
23.10.3 Function Documentation L L e 110
23.10.3.1 hwloc_get_cpubind() 110
23.10.3.2 hwloc_get_last_cpu_location() 110
23.10.8.3 hwloc_get_proc_cpubind() L 110
23.10.3.4 hwloc_get_proc_last_cpu_location() 111
23.10.3.5 hwloc_get_thread_cpubind() Lo 111
23.10.3.6 hwloc_set_cpubind() 111
23.10.3.7 hwloc_set_proc_cpubind() 112
23.10.3.8 hwloc_set_thread cpubind() 112

23.11 Memory binding L 112
23.11.1 Detailed Description e 113
23.11.2 Enumeration Type Documentation L 114
23.11.2.1 hwloc_membind_flags_t 114
23.11.2.2 hwloc_membind_policy t 114
23.11.3 Function Documentation L e 116
23.11.8.1 hwloc_alloc() e 116
23.11.3.2 hwloc_alloc_membind() 116
23.11.8.3 hwloc_alloc_membind_policy() o 116
23.11.8.4 hwloc_free() o e 117
23.11.3.5 hwloc_get_area_membind() 117
23.11.3.6 hwloc_get_area_memlocation() Lo 117
23.11.3.7 hwloc_get membind() 118
23.11.3.8 hwloc_get_proc_membind() 118
23.11.3.9 hwloc_set_area_membind() 119
23.11.3.10 hwloc_set_ membind() 119
23.11.3.11 hwloc_set_proc_membind() 120

23.12 Changing the Source of Topology Discovery 120
23.12.1 Detailed Description e e 120
23.12.2 Enumeration Type Documentation L 120
23.12.2.1 hwloc_topology_components_flag_e oL 120

23.12.3 Function Documentation L e e 121
23.12.3.1 hwloc_topology_set_components()o 121

Generated by Doxygen

viii

23.12.3.2 hwloc_topology_set_ pid() 121
23.12.3.3 hwloc_topology_set_synthetic() L Lo 121
23.12.3.4 hwloc_topology_set_xml() 122
23.12.3.5 hwloc_topology_set_xmlbuffer() Lo 122

23.13 Topology Detection Configurationand Query i i e 123
23.13.1 Detailed Description e e e 124
23.13.2 Enumeration Type Documentation 124
23.13.2.1 hwloc_topology_flags_e 124
23.13.2.2 hwloc_type_filter_ e L 127
23.13.3 Function Documentation L e e 128
23.13.3.1 hwloc_topology_get_flags() o o L 128
23.13.3.2 hwloc_topology_get_support() o 128
23.13.3.3 hwloc_topology_get_type filter()o 129
23.13.83.4 hwloc_topology_get_userdata() 129
23.13.3.5 hwloc_topology_is_thissystem() 129
23.13.3.6 hwloc_topology_set_all_types filter() 130
23.13.3.7 hwloc_topology_set_cache_types_filter() 130
23.13.3.8 hwloc_topology_set_flags() o 130
23.13.3.9 hwloc_topology_set_icache_types filter() 130
23.13.3.10 hwloc_topology_set_io_types_filter()o 131
23.13.3.11 hwloc_topology_set_type_filter() L 131
23.13.3.12 hwloc_topology_set_userdata() 131

23.14 Modifying aloaded Topology« o e 131
23.14.1 Detailed Description e e e e 132
23.14.2 Enumeration Type Documentation L 132
23.14.21 hwloc_allow_flags_e 132
23.14.2.2 hwloc_restrict flags_ e L 132
23.14.3 Function Documentation L L e 133
23.14.3.1 hwloc_obj_add_other _obj_sets() 133
23.14.3.2 hwloc_topology_alloc_group_object() 133
23.14.3.3 hwloc_topology_allow() 133
23.14.3.4 hwloc_topology_free_group_object() 134
23.14.3.5 hwloc_topology_insert_group_object() 134
23.14.3.6 hwloc_topology_insert_misc_object() 135
23.14.3.7 hwloc_topology_refresh() 135
23.14.3.8 hwloc_topology_restrict() o 136
23.15Kinds of object Type e 136
23.15.1 Detailed Description e e e e e 136
23.15.2 Function Documentation L L e e 136

Generated by Doxygen

23.15.2.1 hwloc_obj_type is_cache() 136

23.15.2.2 hwloc_obj_type_is_dcache() 137

23.15.2.3 hwloc_obj_type_is_icache() 137

23.15.2.4 hwloc_obj_type_is_io() 137

23.15.2.5 hwloc_obj_type_is_memory() 137

23.15.2.6 hwloc_obj_type_is_normal() 137

23.16 Finding Objects inside a CPU set 138
23.16.1 Detailed Description e e e 138
23.16.2 Function Documentation L 138
23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset() 138

23.16.2.2 hwloc_get_largest_objs_inside_cpuset() 138

23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth() 139

23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by type()o 139

23.16.2.5 hwloc_get_next_obj_inside_cpuset by depth() 139

23.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type() 140

23.16.2.7 hwloc_get_obj_index_inside_cpuset() oL 140

23.16.2.8 hwloc_get_obj_inside_cpuset_by_depth() 140

23.16.2.9 hwloc_get_obj_inside_cpuset_by_type() oL 141

23.17 Finding Objects covering atleast CPU set e 141
23.17.1 Detailed Description e e 141
23.17.2 Function Documentation L e e 141
23.17.2.1 hwloc_get_child_covering_cpuset() oo 141

23.17.2.2 hwloc_get_next_obj_covering_cpuset_by depth(). 142

23.17.2.3 hwloc_get_next_obj_covering_cpuset_by type() 142

23.17.2.4 hwloc_get_obj_covering_cpuset()o 143

23.18 Looking at Ancestor and Child Objects 143
23.18.1 Detailed Description e e e e 143
23.18.2 Function Documentation L e e 143
23.18.2.1 hwloc_get_ancestor_obj_by depth() 143

23.18.2.2 hwloc_get_ancestor_obj by type()o 143

23.18.2.3 hwloc_get_common_ancestor_obj() o 144

23.18.24 hwloc_get next_child() 144

23.18.2.5 hwloc_obj_is_in_subtree() L 144

23.19 Looking at Cache Objects e 145
23.19.1 Detailed Description e 145
23.19.2 Function Documentation L e e 145
23.19.2.1 hwloc_get_cache_covering_cpuset() oo 145

23.19.2.2 hwloc_get_cache_type depth() 145

23.19.2.3 hwloc_get_shared_cache_covering_obj() 145

Generated by Doxygen

23.20 Finding objects, miscellaneous helpers 146

23.20.1 Detailed Description e e e e e 146
23.20.2 Function Documentation L L 146
23.20.2.1 hwloc_bitmap_singlify_per_core() 146

23.20.2.2 hwloc_get_closest_objs() 146

23.20.2.3 hwloc_get_numanode_obj by _os_index() L. 147

23.20.2.4 hwloc_get_obj_below_array by type() 147

23.20.2.5 hwloc_get_obj_below_by type() 147

23.20.2.6 hwloc_get_obj_with_same_locality() 148

23.20.2.7 hwloc_get_pu_obj_by os_index() 148

23.21 Distributing items over atopology 149
23.21.1 Detailed Description L e e 149
23.21.2 Enumeration Type Documentation L 149
23.21.2.1 hwloc_distrib_flags_e 149

23.21.3 Function Documentation L 149
23.21.3.1 hwloc_distrib() 149

23.22 CPU and node sets of entire topologies 150
23.22.1 Detailed Description e e 150
23.22.2 Function Documentation L e e 150
23.22.2.1 hwloc_topology_get_allowed_cpuset() oo 150

23.22.2.2 hwloc_topology_get_allowed_nodeset() 150

23.22.2.3 hwloc_topology_get_complete_cpuset()o 151

23.22.2.4 hwloc_topology_get_complete_nodeset() 151

23.22.2.5 hwloc_topology_get_topology_cpuset() 151

23.22.2.6 hwloc_topology_get_topology_nodeset() 152

23.23 Converting between CPU setsand node sets o 152
23.23.1 Detailed Description e e e e e 152
23.23.2 Function Documentation L L e e 152
23.23.2.1 hwloc_cpuset_from_nodeset() L 152

23.23.2.2 hwloc_cpuset_to_nodeset() 153

23.24 Finding /O objects L e 153
23.24.1 Detailed Description e 153
23.24.2 Function Documentation L e 153
23.24.2.1 hwloc_bridge_covers_pcibus() oL 153

23.24.22 hwloc_get next_bridge() L 153

23.24.23 hwloc_get next_osdev() 154

23.24.24 hwloc_get_next_pcidev() L 154

23.24.2.5 hwloc_get_non_io_ancestor obj() oo 154

23.24.2.6 hwloc_get_pcidev_by busid()o 155

Generated by Doxygen

xi

23.24.2.7 hwloc_get_pcidev_by busidstring() oo 155

23.25 The bitmap APl e e 155
23.25.1 Detailed Description e e e e 156
23.25.2 Macro Definition Documentation L 157
23.25.2.1 hwloc_bitmap_foreach_begin L o 157
23.25.2.2 hwloc_bitmap_foreach_end L 157
23.25.3 Typedef Documentation. L 157
23.25.3.1 hwloc_bitmap_t. 157
23.25.3.2 hwloc_const_bitmap_t 157
23.25.4 Function Documentation L e e 157
23.25.4.1 hwloc_bitmap_allbut() 157
23.25.4.2 hwloc_bitmap_alloc() e 157
23.25.4.3 hwloc_bitmap_alloc_full() 158
23.25.4.4 hwloc_bitmap_and() 158
23.25.4.5 hwloc_bitmap_andnot() 158
23.25.4.6 hwloc_bitmap_asprintf() 158
23.25.4.7 hwloc_bitmap_clr() o 158
23.25.4.8 hwloc_bitmap_clr_range() 159
23.25.4.9 hwloc_bitmap_compare() e 159
23.25.4.10 hwloc_bitmap_compare_first() 159
23.25.4.11 hwloc_bitmap_copy()« 160
23.25.4.12 hwloc_bitmap_dup() 160
23.25.4.13 hwloc_bitmap_fill() 160
23.25.4.14 hwloc_bitmap_first() 160
23.25.4.15 hwloc_bitmap_first_unset() 160
23.25.4.16 hwloc_bitmap_free() 160
23.25.4.17 hwloc_bitmap_from_ith_ulong()o 160
23.25.4.18 hwloc_bitmap_from_ulong() 161
23.25.4.19 hwloc_bitmap_from_ulongs() 161
23.25.4.20 hwloc_bitmap_intersects() 161
23.25.4.21 hwloc_bitmap_isequal() L 161
23.25.4.22 hwloc_bitmap_isfull() 161
23.25.4.23 hwloc_bitmap_isincluded() 162
23.25.4.24 hwloc_bitmap_isset() 162
23.25.4.25 hwloc_bitmap_iszero() 162
23.25.4.26 hwloc_bitmap_last() 162
23.25.4.27 hwloc_bitmap_last_unset() L 162
23.25.4.28 hwloc_bitmap_list_asprintf() 163
23.25.4.29 hwloc_bitmap_list_snprintf() Lo 163

Generated by Doxygen

23.25.4.30 hwloc_bitmap_list_sscanf() 163

23.25.4.31 hwloc_bitmap_next() 163
23.25.4.32 hwloc_bitmap_next_unset() L 164
23.25.4.33 hwloc_bitmap_not() 164
23.25.4.34 hwloc_bitmap_nr_ulongs() 164
23.25.4.35 hwloc_bitmap_only() 164
23.25.4.36 hwloc_bitmap_or() 165
23.25.4.37 hwloc_bitmap_set() 165
23.25.4.38 hwloc_bitmap_set_ith_ulong() 165
23.25.4.39 hwloc_bitmap_set range() L 165
23.25.4.40 hwloc_bitmap_singlify() 165
23.25.4.41 hwloc_bitmap_snprintf() 165
23.25.4.42 hwloc_bitmap_sscanf() 166
23.25.4.43 hwloc_bitmap_taskset_asprintf()o o 166
23.25.4.44 hwloc_bitmap_taskset_snprintf() oo 166
23.25.4.45 hwloc_bitmap_taskset_sscanf() oo 167
23.25.4.46 hwloc_bitmap_to_ith_ulong() 167
23.25.4.47 hwloc_bitmap_to_ulong()« . . 167
23.25.4.48 hwloc_bitmap_to_ulongs() 167
23.25.4.49 hwloc_bitmap_weight() 167
23.25.4.50 hwloc_bitmap_xor() 168
23.25.4.51 hwloc_bitmap_zero() 168

23.26 Exporting Topologies to XML e 168
23.26.1 Detailed Description e e e 168
23.26.2 Enumeration Type Documentation L e 168
23.26.2.1 hwloc_topology_export_xml_flags e 168
23.26.3 Function Documentation L e e 169
23.26.3.1 hwloc_export_obj_userdata() 169
23.26.3.2 hwloc_export_obj_userdata_base64() L. 169
23.26.3.3 hwloc_free_xmlbuffer() 169
23.26.3.4 hwloc_topology_export_xml() 170
23.26.3.5 hwloc_topology_export_xmlbuffer() o 170
23.26.3.6 hwloc_topology_set_userdata_export_callback() 171
23.26.3.7 hwloc_topology_set_userdata_import_callback() 171

23.27 Exporting Topologies to Synthetic L 171
23.27.1 Detailed Description e e e e e 171
23.27.2 Enumeration Type Documentation L 171
23.27.2.1 hwloc_topology_export_synthetic flags e 171
23.27.3 Function Documentation L L e e 172

Generated by Doxygen

23.27.3.1 hwloc_topology_export_synthetic() 172

23.28 Retrieve distances between objects L Lo 172
23.28.1 Detailed Description e e e 173
23.28.2 Enumeration Type Documentation 173
23.28.2.1 hwloc_distances_kind_e L 173

23.28.2.2 hwloc_distances_transform e 174

23.28.3 Function Documentation L e 175
23.28.3.1 hwloc_distances_get() 175

23.28.3.2 hwloc_distances_get_by depth() 175

23.28.3.3 hwloc_distances_get by name() o 175

23.28.3.4 hwloc_distances_get_by type() o 176

23.28.3.5 hwloc_distances_get_ name() 176

23.28.3.6 hwloc_distances_release() 176

23.28.3.7 hwloc_distances_transform() 176

23.29 Helpers for consulting distance matrices 177
23.29.1 Detailed Description e e e e e 177
23.29.2 Function Documentation L L e e 177
23.29.2.1 hwloc_distances_obj_index() 177

23.29.2.2 hwloc_distances_obj_pair_values() oo 177

23.30 Add distances between objects L 178
23.30.1 Detailed Description e e e e e 178
23.30.2 Typedef Documentation e e 178
23.30.2.1 hwloc _distances_add handle t 178

23.30.3 Enumeration Type Documentationo 178
23.30.3.1 hwloc_distances_add flag. e 178

23.30.4 Function Documentation 179
23.30.4.1 hwloc_distances_add_commit() o 179

23.30.4.2 hwloc_distances_add create() 179

23.30.4.3 hwloc_distances_add_values() e 180

23.31 Remove distances between objects L 180
23.31.1 Detailed Description 180
23.31.2 Function Documentation L 180
23.31.2.1 hwloc_distances_release_remove()o oo 180

23.31.2.2 hwloc_distances_remove() o o e 180

23.31.2.3 hwloc_distances_remove_by_depth() 181

23.31.2.4 hwloc_distances_remove_by_type()o 181

23.32 Comparing memory node attributes for finding where to allocateon 181
23.32.1 Detailed Description e e e e e 182
23.32.2 Typedef Documentation e e 182

Generated by Doxygen

Xiv

23.32.2.1 hwloc_memattr id t e 182

23.32.3 Enumeration Type Documentation L 183
23.32.3.1 hwloc_local_numanode_flag_ e 183

23.32.3.2 hwloc_location_type_e L 183
23.32.3.3hwloc_memattr id e e 183

23.32.4 Function Documentation L e 185
23.32.4.1 hwloc_get_local_numanode_objs()o o 185

23.32.4.2 hwloc_memattr_get_best_initiator() oL 185

23.32.4.3 hwloc_memattr_get_best target() L. 186

23.32.4.4 hwloc_memattr_get by name()o L 187

23.32.4.5 hwloc_memattr_get_initiators() oo 187

23.32.4.6 hwloc_memattr_get targets() 187

23.32.4.7 hwloc_memattr_get value() 188

23.32.4.8 hwloc_topology_get_default_nodeset() 189

23.33 Managing memory attributes L 189
23.33.1 Detailed Description e e e e e 190
23.33.2 Enumeration Type Documentation L 190
23.33.2.1 hwloc_memattr flag_e 190

23.33.3 Function Documentation L 190
23.33.83.1 hwloc_memattr_get flags() 190

23.33.3.2 hwloc_memattr_get name() 190

23.33.3.3 hwloc_memattr_register() 191

23.33.83.4 hwloc_memattr_set_value() 191

23.34Kinds of CPU COres o o e 192
23.34.1 Detailed Description e e e e 192
23.34.2 Function Documentation L 192
23.34.2.1 hwloc_cpukinds_get by cpuset()o 192

23.34.2.2 hwloc_cpukinds_get_info() 193

23.34.23 hwloc_cpukinds_get_ nr() 193

23.34.2.4 hwloc_cpukinds_register() 193

23.35 Linux-specifichelpers e 194
23.35.1 Detailed Description e e 194
23.35.2 Function Documentation L e e 194
23.35.2.1 hwloc_linux_get_tid cpubind() 194

23.35.2.2 hwloc_linux_get_tid last_cpu_location() 195

23.35.2.3 hwloc_linux_read_path_as_cpumask() 195

23.35.2.4 hwloc_linux_set_tid_cpubind() 195

283.36 Interoperability with Linux libnuma unsigned longmaskso 195
23.36.1 Detailed Description e e e 196

Generated by Doxygen

XV

23.36.2 Function Documentation 196
23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs() 196

23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs() oL 196

23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs() 197

23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs() 197

23.37 Interoperability with Linux libnuma bitmask 197
23.37.1 Detailed Description e e e 197
23.37.2 Function Documentation L L e 198
23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask() 198

23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask() 198

23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask() 198

23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()o L. 198

23.38 Windows-specific helpers 199
23.38.1 Detailed Description 199
23.38.2 Function Documentation 199
23.38.2.1 hwloc_windows_get_nr_processor_groups() « v v v v v e i e e 199

23.38.2.2 hwloc_windows_get_processor_group_cpuset() 199

23.39 Interoperability with glibc sched affinity 200
23.39.1 Detailed Description e e e e 200
23.39.2 Function Documentation L 200
23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity() 200

23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity() 200

23.40 Interoperability with OpenCL e 201
23.40.1 Detailed Description e e e e e 201
23.40.2 Function Documentation L L e e 201
23.40.2.1 hwloc_opencl_get_device_cpuset()o 201

23.40.2.2 hwloc_opencl_get_device_osdev()o 201

23.40.2.3 hwloc_opencl_get_device_osdev_by_index() 202

23.40.2.4 hwloc_opencl_get_device_pci_busid() Lo 202

23.41 Interoperability with the CUDA Driver APl e 202
23.41.1 Detailed Description 203
23.41.2 Function Documentation L e 203
23.41.2.1 hwloc_cuda_get_device_cpuset()o 203

23.41.2.2 hwloc_cuda_get_device_osdev() 203

23.41.2.3 hwloc_cuda_get_device_osdev_by_index() 204

23.41.2.4 hwloc_cuda_get_device_pci_ids() L 204

23.41.2.5 hwloc_cuda_get_device_pcidev() 204

23.42 Interoperability with the CUDA Runtime APl 204
23.42.1 Detailed Description e e e e e 205

Generated by Doxygen

Xvi

23.42.2 Function Documentation L 205
23.42.2.1 hwloc_cudart_get_device_cpuset() o 205

23.42.2.2 hwloc_cudart_get_device_osdev_by index() 205

23.42.2.3 hwloc_cudart_get_device_pci_ids()o oo 206

23.42.2.4 hwloc_cudart_get_device_pcidev()o 206

23.43 Interoperability with the NVIDIA Management Library 206
23.43.1 Detailed Description e e e 206
23.43.2 Function Documentation L L e 206
23.43.2.1 hwloc_nvml_get_device_cpuset() e 206

23.43.2.2 hwloc_nvml_get_device_osdev() Lo 207

23.43.2.3 hwloc_nvml_get_device_osdev_by_index() 207

23.44 Interoperability with the ROCm SMI Management Library, 207
23.44.1 Detailed Description e e e e 208
23.44.2 Function Documentation L e 208
23.44.2.1 hwloc_rsmi_get_device_cpuset()o 208

23.44.2.2 hwloc_rsmi_get_device_osdev()o 208

23.44.2.3 hwloc_rsmi_get_device_osdev_by_index() 208

23.45 Interoperability with the oneAPI Level Zero interface.o 209
23.45.1 Detailed Description e e e e 209
23.45.2 Function Documentation 209
23.45.2.1 hwloc_levelzero_get_device_cpuset()o 209

23.45.2.2 hwloc_levelzero_get device_osdev() L. 210

23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset() 210

23.45.2.4 hwloc_levelzero_get_sysman_device_osdev() 210

23.46 Interoperability with OpenGL displays o 211
23.46.1 Detailed Description L e 211
23.46.2 Function Documentation L e e 211
23.46.2.1 hwloc_gl_get_display_by osdev() 211

23.46.2.2 hwloc_gl_get_display_osdev_by name() 212

23.46.2.3 hwloc_gl_get display_osdev_by port_device() 212

23.47 Interoperability with OpenFabrics 212
23.47.1 Detailed Description e e 212
23.47.2 Function Documentation L e e 213
23.47.2.1 hwloc_ibv_get_device_cpuset()o 213

23.47.2.2 hwloc_ibv_get_device_osdev() L 213

23.47.2.3 hwloc_ibv_get _device_osdev_by name() 213

23.48 Topology differences L e 214
23.48.1 Detailed Description e e 214
23.48.2 Typedef Documentation e 214

Generated by Doxygen

23.48.2.1 hwloc_topology_diff obj attr type_t 214
23.48.2.2 hwloc_topology_diff t 215
23.48.2.3 hwloc_topology_diff type t 215
23.48.3 Enumeration Type Documentationo 215
23.48.3.1 hwloc_topology_diff_apply _flags. e 215
23.48.3.2 hwloc_topology_diff obj_attr_type_eo 215
23.48.3.3 hwloc_topology_diff type_e 215
23.48.4 Function Documentation L L e e 216
23.48.4.1 hwloc_topology_diff apply() 216
23.48.4.2 hwloc_topology_diff build() 216
23.48.4.3 hwloc_topology_diff_destroy() 217
23.48.4.4 hwloc_topology_diff export_ xml() 217
23.48.4.5 hwloc_topology_diff_export_xmlbuffer() 217
23.48.4.6 hwloc_topology_diff load_xml() 217
23.48.4.7 hwloc_topology_diff load_xmlbuffer() 218

23.49 Sharing topologies between processes L e e e e 218
23.49.1 Detailed Description 218
23.49.2 Function Documentation 218
23.49.2.1 hwloc_shmem_topology_adopt() 218
23.49.2.2 hwloc_shmem_topology_get_length() 219
23.49.2.3 hwloc_shmem_topology_write() 220

23.50 Components and Plugins: Discovery components andbackends 220
23.50.1 Detailed Description e e e e e 221
23.50.2 Typedef Documentation 221
23.50.2.1 hwloc_disc_phase_t 221
23.50.3 Enumeration Type Documentation L 221
23.50.3.1 hwloc_disc_phase_e e e 221
23.50.3.2 hwloc_disc_status flag_. e 221
23.50.4 Function Documentation L 221
23.50.4.1 hwloc_backend_alloc() o 221
23.50.4.2 hwloc_backend_enable() 222

23.51 Components and Plugins: Genericcomponents 222
23.51.1 Detailed Description e e e e 222
23.51.2 Typedef Documentation 222
23.51.2.1 hwloc_component_type t 222
23.51.3 Enumeration Type Documentation 222
23.51.83.1 hwloc_component_type_e 222
23.51.4 Function Documentation L e 223
23.51.4.1 hwloc_plugin_check_namespace() 223

Generated by Doxygen

Xviii

23.52 Components and Plugins: Core functions to be used by components 223
23.52.1 Detailed Description e e e e 223
23.52.2 Macro Definition Documentation L 223

23.52.2.1 HWLOC_SHOW_ALL_ERRORS i 223
23.52.2.2 HWLOC_SHOW _CRITICAL_ERRORS i . 223
23.52.3 Function Documentation e 224
23.52.3.1 hwloc__insert_object_ by cpuset() o 224
23.52.3.2 hwloc_alloc_setup_object() 224
23.52.3.3 hwloc_hide_errors() e 224
23.52.3.4 hwloc_insert_object_by_parent() 224
23.52.3.5 hwloc_obj_add_children_sets() o 225
23.52.3.6 hwloc_topology_reconnect() 225

23.53 Components and Plugins: Filteringobjects L 225
23.53.1 Detailed Description L 225
23.53.2 Function Documentation L e 225

23.53.2.1 hwloc_filter_check_keep_object() 225
23.53.2.2 hwloc_filter_check_keep_object_type() L o 226
23.53.2.3 hwloc_filter_check_osdev_subtype_important() 226
23.53.2.4 hwloc_filter_check_pcidev_subtype_important() 226

23.54 Components and Plugins: helpers for PCldiscovery o 226
23.54.1 Detailed Description e e e 226
23.54.2 Function Documentation L e e 226

23.54.2.1 hwloc_pcidisc_check_bridge_type() oo o 226
23.54.2.2 hwloc_pcidisc_find_bridge_buses() oo 227
23.54.2.3 hwloc_pcidisc_find_cap()« . 227
23.54.2.4 hwloc_pcidisc_find_linkspeed() 227
23.54.2.5 hwloc_pcidisc_tree_attach() Lo 227
23.54.2.6 hwloc_pcidisc_tree_insert_by_busid() oo 227

23.55 Components and Plugins: finding PCI objects during other discoveries 227
23.55.1 Detailed Description e e e e 228
23.55.2 Function Documentation L e 228

23.55.2.1 hwloc_pci_find_by_busid() 228
23.55.2.2 hwloc_pci_find_parent_by busid() 228

23.56 Components and Plugins: distances 228
23.56.1 Detailed Description e e 228
23.56.2 Typedef Documentation L 229

23.56.2.1 hwloc_backend distances_add handle t 229
23.56.3 Function Documentation L L e e 229
23.56.3.1 hwloc_backend_distances_add_commit() 229

Generated by Doxygen

Xix

23.56.3.2 hwloc_backend_distances_add_create() 229

23.56.3.3 hwloc_backend_distances_add_values() 229

24 Data Structure Documentation 231
24.1 hwloc_backend Struct Reference e 231
24.1.1 Detailed Description e e 231
24.1.2 Field Documentation e e e 231
24121 disable e e e e 231
24.1.22dISCOVEr o e 231
241.23flags e e 232

24.1.2.4 get_pci_busid_cpuset 232

241.25i0s thissystem 232
24.1.2.6Phases 232

24127 private_data L 232

24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 232
24.2.1 Detailed Description e 233
2422 Field Documentation e e 233
2422 1depth. . . . L 233
24.222domain oL L e e 233

24223 [UNION] .« . . L e 233
24.2.2.4downstream_type 233

24225PCi [1/2] v v v v i e e e 233

24226 [struct] [2/21 . . . e 233
24.2.2.7secondary_bus L 233

24228 subordinate bus 233
242290UNiON] e 233

242210 upstream_type L e e e 233

24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 234
24.3.1 Detailed Description e e 234
24.3.2 Field Documentation L e e 234
24.3.2.1 associativity 234
24322depth. 234
24.3.231ineSiZe L e 234

243248128 234

24.3251tYP8 234

24 .4 hwloc_cl_device_pci_bus_info_khr Struct Reference L. 234
24.41 Field Documentation L e e 235
24411 pCi_bus . . . L e 235
2441.2pCI_deviCe e 235

Generated by Doxygen

XX

24413 pci_domain e e 235

24414 pci_function L L 235

24.5 hwloc_cl_device_topology_amd Union Reference 235
2451 Field Documentation L e e 235
2451.1bUS e e e e e 235
2451.2data L e 235
2451.3device 235

24514 function L L 236

24515 struct] 236

24516 [struct] e 236
2451.71ype e e e 236
2451.8UNUSEd L e 236

24.6 hwloc_component Struct Reference 236
24.6.1 Detailed Description L 236
24.6.2 Field Documentation e e 236
24.6.21abi e e e 236
24.6.22data e e 236
24.6.23finalize L e 237
24.6.241Mlags o e e 237

24.6.2510Nit . . . L 237
24B8.261tYPC 237

24.7 hwloc_disc_component Struct Reference L 237
24.7.1 Detailed Description L e 238
24.7.2 Field Documentation e 238
24721 enabled_by default 238

24.7.22 excluded phases 238

24723 instantiate L 238
247.24NAME L L e e e 238
24.7.25phases e 238

24726 priOrity L e 238

24.8 hwloc_disc_status Struct Reference e 238
24.8.1 Detailed Description e 239
24.8.2 Field Documentation L e e 239
24.8.2.1 excluded_phases 239
24.822flags 239
24.8.2.3phase e 239

24.9 hwloc_distances_s Struct Reference e e 239
24.9.1 Detailed Description e 239
24.9.2 Field Documentation L e e e 240

Generated by Doxygen

xxi

249.21Kind ... 240
24.9.22nbobjs e e 240

24923005 e 240
24.9.2.4values L e 240

24.10 hwloc_obj_attr_u::hwloc_group_attr s Struct Reference 240
24.10.1 Detailed Description e e e 240
24.10.2 Field Documentation L e e e 240
24102 1depth L e e e 240
24.10.2.2dont_merge e e 241
2410.23Kind L 241

241024 subkind e e e 241

24.11 hwloc_info_s Struct Reference e 241
24.11.1 Detailed Description e e e e 241
24.11.2 Field Documentation L e e e 241
2411.210aMe . . L. L e 241
2411.22value L 241

24.12 hwloc_location Struct Reference e e 241
24.12.1 Detailed Description e e 242
24.12.2 Field Documentation L e e e 242
241227 location e 242
2412221YP€ . . . L e 242

24 .13 hwloc_location::hwloc_location_u Union Reference 242
24.13.1 Detailed Description e 242
24.13.2 Field Documentation e e e 242
24.13.2.1cpuset . . .o e e e 242
24.13.220bJeCt 242

24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference 242
24141 Detailed Description 243
24.14.2 Field Documentation L e 243
24142 0 count L e 243
2414.2.2SIZ€ e e e e e 243

24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference 243
24.15.1 Detailed Description e e e e e 243
24.15.2 Field Documentation e 243
241521 local_memory L e e 243
24.15.2.2page_types L e e 243

241523 page_types_len 244

24.16 hwloc_obj Struct Reference 244
24.16.1 Detailed Description e e e 245

Generated by Doxygen

xxii

24.16.2 Field Documentation L 245
241621 arity L e e e e 245
24.16.2.2attr e e 245
2416.23children L 245
24.16.2.4 complete_cpuset 245
24.16.2.5 complete_nodeset 245
24.16.2.6 cpuset . . . L L e 245
24.16.2.7depth L e e 246
24.16.2.8first_child L 246
24.16.2.9gp_index e e 246
24.16.2.1010nfos L e e e 246
24.16.2.11infos_count L e e e e 246
24.16.212100_arity 246
24.16.2.13io_first_child. 246
2416.214 last_child 247
24.16.2.15 logical_index 247
24.16.216 memory_arity L e e 247
24.16.2.17 memory_first child 247
24.16.218 misc_arity 247
24.16.2.19 misc first_child e 247
24.16.220NaMe L e 247
24.16.2.21 next_Cousin L. e e 247
24.16.2.22next_sibling L 247
24.16.2.23 nodeset L L L 248
24.16.2.24 05_INAEX L e e e e e 248
24.16.2.25 parent L e e e 248
24.16.2.26 Prev_COUSIN o o i e e e 248
2416.227 prev_sibling L 248
2416.2.28 sibling_rank L 248
24.16.2.29 subtype L 248
24.16.2.30 symmetric_subtree 248
2416.2.31total_memory L e 249
2416.2321YP8 . . . o e e e e e 249
24.16.2.33userdata L L 249

2417 hwloc_obj_attr uUnion Reference 249

24.17.1 Detailed Description e e e 249

24.17.2 Field Documentation 249
241721 bridge 249
2417.22cache e 249

Generated by Doxygen

241723 Gr0UP .« . . L e e 250
2417.24numanode L. L e 250
2417.2508deV 250

241726 pCIdeV e 250

24.18 hwloc_obj_attr_u::hwloc_osdev_attr s Struct Reference 250
24.18.1 Detailed Description e e e 250
24.18.2 Field Documentation e 250
2448 21HYPE .« o o e e 250

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 250
24.19.1 Detailed Description e e e e 251
24.19.2 Field Documentation L e 251
2419.21DUS . . . o o 251
2419.22class_id. L 251
24.19.23dev e e e e e 251

24.19.24 device_id e e e e 251
24.19.25domain 251

241926 UNC e e e e e 251
2419.2.710inkspeed 251
24.19.2.81eViSION . . . L .. 251

24.19.29 subdevice id e e e e 251

24.19.2.10 subvendor_id L e e e 252

2419211 vendor_id L L e e 252

24.20 hwloc_topology_cpubind_support Struct Reference Lo oo 252
24.20.1 Detailed Description e e e e e 252
24.20.2 Field Documentation L e 252
24.20.2.1 get_proc_cpubind L 252

24.20.2.2 get_proc_last_cpu_location 252

24.20.2.3 get_thisproc_cpubind 252

24.20.2.4 get_thisproc_last_cpu_location 253

24.20.2.5 get_thisthread_cpubind L 253

24.20.2.6 get_thisthread_last_cpu_location L L L 253

24.20.2.7 get_thread_cpubind 253

24.20.2.8 set_proc_cpubind L 253

24.20.2.9 set_thisproc_cpubind 253

24.20.2.10 set_thisthread_cpubind 253

24.20.2.11 set_thread_cpubind L 253

24.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 253
24.21.1 Field Documentation L e 254
242100 next . . .o e e e e e 254

Generated by Doxygen

xxiv

24211.2HYP€ . . . o e 254

24.22 hwloc_topology_diff _obj_attr_u::hwloc_topology_diff obj_attr_generic_s Struct Reference 254
24.22.1 Field Documentation L 254
242211 type . . . L e 254

24.23 hwloc_topology_diff _u::hwloc_topology_diff obj_attr s Struct Reference 254
24.23.1 Field Documentation L 254
242311 diff . . L 254
24.23.1.2Nnext . . . L e e e e 254
24.231.30bj_depth L 255
24231.40bj_index 255
24.23.1.51ype e e 255

24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference 255
24.24.1 Detailed Description e e e e 255
24.24.2 Field Documentation L e e e 255
242421 NaME L L e 255
242422newvalue L L 255
24.2423o0ldvalue e e e 255

2424241 ypE . . . L L e 255

24.25 hwloc_topology_diff_obj_attr u Union Reference 256
24.25.1 Detailed Description L e e e 256
24.25.2 Field Documentation L 256
242521 Q€NETIC o e 256
24252.2stiNg L e 256

242523 UINtB4 . . . L . e 256

24.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference 256
24.26.1 Detailed Description L e 256
24.26.2 Field Documentation e e e 257
24.26.2.10ndex e e e e 257
24.26.22newvalue L e e 257
24.26.230ldvalue 257

2426 241YPC i i e 257

24.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 257
24.27.1 Field Documentation e e e 257
242710 next . . oL e e e e 257
24271.20bj_depth L 257

242713 0bjindex 257
24270.418YPE . . . L 257

24.28 hwloc_topology_diff_u Union Reference 258
24.28.1 Detailed Description e e e e 258

Generated by Doxygen

XXV

24.28.2 Field Documentation L 258
242821 GENEIIC o o 258
24.28.2.20bj_attr e 258
24.28.2.3t00_complex e 258

24.29 hwloc_topology_discovery_support Struct Reference o oo . 258

24.29.1 Detailed Description e e e 258

24.29.2 Field Documentation e 259
24.29.2.1 cpukind_efficiency 259
24.2922disallowed_numa L e e e e 259
24.29.23disallowed_pu L 259
24.29.24NUMA e e e e e e e e 259
24.29.25nUuma_memory e 259
242926 PU. . . ot e 259

24.30 hwloc_topology_membind_support Struct Reference L. 259

24.30.1 Detailed Description e e 260

24.30.2 Field Documentation e e e e e 260
24.30.2.1 alloc_membind L L e e e e e 260
24.30.2.2bind_membind L e e e e 260
24.30.2 3 firsttouch_membind L 260
24.30.2.4 get_area_membind 260
24.30.2.5get_area_memlocation L 260
24.30.2.6 get_proc_membind L 260
24.30.2.7 get_thisproc_membind 260
24.30.2.8 get_thisthread_membindo 260
24.30.29 interleave_membind L L e 260
24.30.2.10 migrate_membind L L L 261
24.30.2.11 nexttouch_membind 261
24.30.2.12set_area_membind L 261
24.30.2.13set_proc_membind L. L 261
24.30.2.14 set_thisproc_membindo 261
24.30.2.15 set_thisthread_membind 261
24.30.2.16 weighted_interleave_membind 261

24.31 hwloc_topology_misc_support Struct Reference o o 261

24.31.1 Detailed Description 261

24.31.2 Field Documentation 262
24.31.2.1 imported_support 262

24.32 hwloc_topology_support Struct Reference L 262

24.32.1 Detailed Description e e e 262

24.32.2 Field Documentation L e e e 262

Generated by Doxygen

XXVi

243221 cpubind 262
243222 dISCOVEIY o e e 262
243223 membind L e e 262
243224 MISC . . . L. 262

Generated by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of hierarchical architectures for high-performance
computing

1.1 Table of Contents

« Introduction

hwloc Overview

Command-line Examples

Programming Interface

Questions and Bugs
History / Credits

» Chapters

— Installation

— Compiling software on top of hwloc's C API

— Terms and Definitions

— Command-Line Tools

— Environment Variables

— CPU and Memory Binding Overview

— 1/O Devices

— Miscellaneous objects

— Object attributes

— Topology Attributes: Distances, Memory Attributes and CPU Kinds
— Heterogeneous Memory

— Importing and exporting topologies from/to XML files

— Synthetic topologies

Generated by Doxygen

2 Hardware Locality

Interoperability With Other Software
Thread Safety

Components and plugins

Embedding hwloc in Other Software
Frequently Asked Questions (FAQ)
Upgrading to the hwloc 2.0 API

1.2 hwloc Overview

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware resources in parallel
architectures. It offers command-line tools and a C API for consulting these resources, their locality, attributes, and
interconnection. hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable
to any project seeking to exploit code and/or data locality on modern computing platforms.

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements within a
node, such as: NUMA memory nodes, shared caches, processor packages, dies and cores, processing units (logical
processors or "threads") and even 1/O devices. hwloc also gathers various attributes such as cache and memory
information, and is portable across a variety of different operating systems and platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project
seeking to exploit code and/or data locality on modern computing platforms.

hwloc supports the following operating systems:

« Linux (with knowledge of cgroups and cpusets, memory targets/initiators, etc.) on all supported hardware, includ-
ing Intel Xeon Phi, ScaleMP vSMP, and NumaScale NumaConnect.

« Solaris (with support for processor sets and logical domains)
« AIX

+ Darwin/ OS X

» FreeBSD and its variants (such as kFreeBSD/GNU)

+ NetBSD

« HP-UX

* Microsoft Windows

» IBM BlueGene/Q Compute Node Kernel (CNK)

Since it uses standard Operating System information, hwloc's support is mostly independant from the processor type
(x86, powerpc, ...) and just relies on the Operating System support. The main exception is BSD operating systems
(NetBSD, FreeBSD, etc.) because they do not provide support topology information, hence hwloc uses an x86-only
CPUID-based backend (which can be used for other OSes too, see the Components and plugins section).

To check whether hwloc works on a particular machine, just try to build itand run 1stopo or 1stopo-no-graphics.
If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no topology information is available.
For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

» Symmetrical tree of resources generated from a list of level arities, see Synthetic topologies.

» Remote machine simulation through the gathering of topology as XML files, see Importing and exporting topologies from/to XML file:

Generated by Doxygen

1.3 Command-line Examples 3

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one of
several different formats, including: plain text, LaTeX tikzpicture, PDF, PNG, and FIG (see Command-line Examples
below). Note that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap
API that is used to describe topology objects location on physical/logical processors. See the Programming Interface
below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs are
also provided to ease command-line manipulation of topology objects, binding of processes, and so on.

Bindings for several other languages are available fromthe project website.

1.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the 1 st opo tool may show the following graphical output:

Machine
|NUMAMMEL#0P#Q |
Package L#0 Package L#1 Package L#2 Package L#3
L3 (4096KE)		L3 (4096KE)		L3 (4096KE)		L3 (4096KE)								
L2[1024KB]		L2[1924KBJ		L2[1DI4KB]		L2[1u24KB]		L2[1DI4KB]		L2[1u24KB]		L2[1024KBJ		L2[1u24KB]
L1 (16KE]		L1 {16KE)		L1 (16KE]		L1 {16KE)		L1 (16KE)		L1 {16KE)		L1 (16KE)		L1 (16KE)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#B Core L#T
PU L#OD PU L#2 PU L#4 PU L#G PU L#E PU L#1D PUL#EL2 PU L#14
P#EOD P#d P#1 P#5 P2 P#E P#3 P#ET
PUL#1 PUL#3 PU L#5 PU L&#T PU L#9 PUL#11 PUL#13 PU L#15
P#B p#12 P#D P#13 P#10 P#14 P#11 P#15

Here's the equivalent output in textual form:

Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)
L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#l
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4
PU L#8 (P#2)
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
PU L#10 (P#6)
PU L#11 (P#14)
Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6
PU L#12 (P#3)
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (16KB) + Core L#7

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/#language_bindings

Hardware Locality

PU L#14
PU L#15

(P#7)
(P#15)

Note that there is also an equivalent output in XML that is meant for exporting/importing topologies but it is hardly
readable to human-beings (see Importing and exporting topologies from/to XML files for details).

On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by the administrator), the 1 st opo tool
may show the following graphical output (with ——disallowed for displaying disallowed objects):

Machine (32GE total)

Package L#0

Package L#L

Package L#2

Package L#3

| NUMANode L#0 P#0 (8190MB) |

| NUMANode L#1 P#1 (8192MB) |

| NUMAMNode L#2 P#2 (8192MB) |

| NUMAMNode L#3 P#3 (8192MB) |

| L2 (1024KB) || L2 (1024KE) |

| L2 [1024KB) || L2 (1024KB) |

| L2 (1024KE) || L2 [1024KE) |

| L2 (1024KB) || L2 (1024KE) |

| L1[64KBJ| | L1 (64KE) | | L1 (h4KB) | | L1 (B4KE) | | L1 (G4KE) | | L1 (G4KB) | | L1[64KBJ| | L1[64KBJ|
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7
PUL#O PUL#1 PU L#2 PUL#3 PUL#E PU L#T
P#0 pP#1 p#2 P#3 P#6 p#7
Here's the equivalent output in textual form:
Machine (32GB total)
Package L#0
NUMANode L#0 (P#0 8190MB)
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 8192MB)
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)
Package L#2
NUMANode L#2 (P#2 8192MB)
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)
Package L#3
NUMANode L#3 (P#3 8192MB)
L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)
On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each package):
Machine (16GE total)
NUMAMode L#D P#0 (16GE)
Package L#0 Package L¥1
L2 (4096KE) L2 (4096KE) L2 (4096KE) L2 (4096KE)
L1(32KB) || L1(32kB) || L1i32KE) || L1 (32KE) L1(32KE) || L1i32kE) || L1(32KE) || L1(32KE)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#S Core L#6 Core L#T
PL L#D PUL#L PL L2 P L#3 P L#4 PLY L#S PU L#E PULET
P#0 P#4 P2 P#6 P#1 P#S P#3 P#7

Here's the same output in textual form:

Generated by Doxygen

1.4 Programming Interface 5

Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0
L2 L#0 (4096KB)
L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1 L#1 (32KB) + Core L#l1 + PU L#1 (P#4)
L2 L#1 (4096KB)
L1 L#2 (32KB)
L1 L#3 (32KB)
Package L#1
L2 L#2 (4096KB)
L1 L#4 (32KB)
L1 L#5 (32KB)
L2 L#3 (4096KB)
)
)

+ Core L#2 + PU L#2 (P#2)
+ Core L#3 + PU L#3 (P#6)

+ Core L#4 + PU L#4 (P#1)

+ Core L#5 + PU L#5 (P#5)

L1 L#6 (32KB
L1 L#7 (32KB

+ Core L#6 + PU L#6 (P#3)
+ Core L#7 + PU L#7 (P#7)

1.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to reduce the
need to manually manipulate objects and follow links between them. Documentation for all these is provided later in this
document. Developers may also want to look at hwloc/inlines.h which contains the actual inline code of some hwloc.h
routines, and at this document, which provides good higher-level topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably be
read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps may be used
for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in hwloc/bitmap.h.
Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments. See
the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files
(formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and pdflatex installed —
the documentation will be built during the normal "make" process. The documentation is installed during "make install"
to $prefix/share/doc/hwloc/ and your systems default man page tree (under $prefix, of course).

1.41 Portability

Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems provide
interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited number of kinds
of CPU and memory binding, and some do not provide any binding interface at all. Hwloc's binding functions would
then simply return the ENOSYS error (Function not implemented), meaning that the underlying Operating System does
not provide any interface for them. CPU binding and Memory binding provide more information on which hwloc binding
functions should be preferred because interfaces for them are usually available on the supported Operating Systems.
Similarly, the ability of reporting topology information varies from one platform to another. As shown in
Command-line Examples, hwloc can obtain information on a wide variety of hardware topologies. However, some
platforms and/or operating system versions will only report a subset of this information. For example, on an PPC64-
based system with 8 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from RHEL 5.4,
hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information about caches,
packages, or cores is available.

Here's the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

Machine (61GE total)

Groupd Groupl
| NUMANode L#0 (30GE) | | NUMANode L#1 (31GE) |
| PU L#O | PUL#1 | PU L#2 | PU L#3 | PU Li#4 | PUL#ES | PU L#6 | PU L#T7 | | PU L#8 | PU L#D | PU L#10D | PUL#11 | PU L#12 | PUL#13 | PUL#14 | PUL#15 |

Generated by Doxygen

6 Hardware Locality

And here's the graphical output from Istopo on this platform when SMT is disabled:

Machine [61GE total)

Groupd Groupd
| NUMANode L#0 (3DGE) | | NUMANMode L#1 (31GE) |
|PUL#OlPUL#llPUL#ZlPUL#}l |PUL#4|PUL#5|PUL#SlPUL#?l

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example, seems to change location from
NUMA node #0 to #1. In reality, no PUs "moved" — they were simply re-numbered when hwloc only saw half as many
(see also Logical index in Indexes and Sets). Hence, PU L#6 in the SMT-disabled picture probably corresponds to PU
L#12 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms — even platforms / OSs that provide much
more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report
information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to discover
all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Machine (61GB total)

Group0 Groupl
| NUMANode L#0 (30GB) | | NUMANode L#1 (31GE) |
Package L#0 Package L#1 Package L#2 Package L#3
L3 (32ZMB)		L3 (32ZMB)		L3 (32ME)		L3 (32ME)								
L2 (40%6KEB)		L2 (40%6KEB)		L2 (4096KB)		L2 (4096KB)								
L1{64KE)		L1 (B4KEB)		L1{64KE)		L1 (B4KEB)		L1 (B4KEB)		L1 (64KEB)		L1 (B4KEB)		L1 (B4KEB)
Core L¥D Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7														
PUL#D	PUL#L		PU L#2	PUL#3		PUL#4	PUL#5		PU L#6	PU L#T		PUL#E	PUL#%	

Developers using the hwloc APl or XML output for portable applications should therefore be extremely careful to not
make any assumptions about the structure of data that is returned. For example, per the above reported PPC topology,
it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of hwloc. Long-lived
applications that are meant to span multiple different hardware platforms should also be careful about making structure
assumptions. For example, a new element may someday exist between a core and a PU.

1.4.2 API Example

The following small C example (available in the source tree as “doc/examples/hwloc-hello.c") prints the topology of the
machine and performs some thread and memory binding. More examples are available in the doc/examples/ directory

of the source tree.

/+ Example hwloc API program.

*

See other examples under doc/examples/ in the source tree
for more details.

Copyright ©® 2009-2016 Inria. All rights reserved.

Copyright © 2009-2011 Université Bordeaux

Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
See COPYING in top-level directory.

hwloc-hello.c
/

EIE S SR S)

#include "hwloc.h"

#include <errno.h>
#include <stdio.h>
#include <string.h>

static void print_children (hwloc_topology_t topology, hwloc_obj_t obj,
int depth)
{

Generated by Doxygen

1.4 Programming Interface

char typel[32], attr([1024];
unsigned i;

hwloc_obj_type_snprintf (type, sizeof (type), obj, 0);

printf ("$+s%s", 2«depth, "", type);
if (obj->os_index != (unsigned) -1)

printf ("#%u", obj->os_index);
hwloc_obj_attr_snprintf (attr, sizeof (attr), obj, " ", 0);
if (xattr)

printf (" (%s)", attr);
printf("\n");

for (1 = 0; 1 < obj->arity; i++) {
print_children (topology, obj->children[i], depth + 1);

int main (void)

int depth;

unsigned i, n;

unsigned long size;

int levels;

char string[128];

int topodepth;

void =*m;

hwloc_topology_t topology;
hwloc_cpuset_t cpuset;
hwloc_obj_t obj;

/* Allocate and initialize topology object. =/
hwloc_topology_init (&topology) ;

/* ... Optionally, put detection configuration here to ignore
some objects types, define a synthetic topology, etc....

The default is to detect all the objects of the machine that
the caller is allowed to access. See Configure Topology
Detection. =*/

/+ Perform the topology detection. =/
hwloc_topology_load(topology) ;

/+ Optionally, get some additional topology information
in case we need the topology depth later. x/
topodepth = hwloc_topology_get_depth (topology) ;

/***
«+ First example:
* Walk the topology with an array style, from level 0 (always
* the system level) to the lowest level (always the proc level).
***/
for (depth = 0; depth < topodepth; depth++) {
printf ("«x+ Objects at level %d\n", depth);
for (1 = 0; 1 < hwloc_get_nbobjs_by_depth (topology, depth);
i++) {
hwloc_obj_type_snprintf (string, sizeof (string),
hwloc_get_obj_by_depth(topology, depth, i), 0);
printf ("Index %u: %s\n", i, string);

}

/***
* Second example:
« Walk the topology with a tree style.
***/

printf ("sx+ Printing overall tree\n");

print_children (topology, hwloc_get_root_obj(topology), 0);

/***
« Third example:
* Print the number of packages.
****************k***k**/
depth = hwloc_get_type_depth (topology, HWLOC_OBJ_PACKAGE) ;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
printf ("+x* The number of packages is unknown\n");
} else {
printf ("x+x %u package(s)\n",
hwloc_get_nbobijs_by_depth (topology, depth));

}

[/ ok e ok K ok ok ok Kk K K K K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok ok ok Kk Kk kK Kk Kk Kk K

Generated by Doxygen

8 Hardware Locality

* Fourth example:
« Compute the amount of cache that the first logical processor
* has above it.
***/
levels = 0;
size = 0;
for (obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PU, O0);
obj;
obj = obj->parent)
1f (hwloc_obj_type_is_cache (obj->type)) {
levels++;
size += obj->attr->cache.size;
}
printf ("sx+ Logical processor 0 has %d caches totaling %1uKB\n",
levels, size / 1024);

/***
« Fifth example:
«+ Bind to only one thread of the last core of the machine.
*
* First find out where cores are, or else smaller sets of CPUs if
* the OS doesn’t have the notion of a "core".
***/

depth = hwloc_get_type_or_below_depth (topology, HWLOC_OBJ_CORE) ;

/* Get last core. */
obj = hwloc_get_obj_by_depth (topology, depth,
hwloc_get_nbobjs_by_depth (topology, depth) - 1);
Lt (obj) |
/* Get a copy of its cpuset that we may modify. */
cpuset = hwloc_bitmap_dup (obj->cpuset);

/* Get only one logical processor (in case the core is
SMT/hyper—threaded) . */
hwloc_bitmap_singlify (cpuset);

/* And try to bind ourself there. x/
1f (hwloc_set_cpubind(topology, cpuset, 0)) {
char xstr;
int error = errno;
hwloc_bitmap_asprintf (&str, obj->cpuset);
printf ("Couldn’t bind to cpuset %s: %s\n", str, strerror(error));
free(str);

}

/* Free our cpuset copy x/
hwloc_bitmap_free (cpuset) ;

}

/***
* Sixth example:
«+ Allocate some memory on the last NUMA node, bind some existing
* memory to the last NUMA node.
‘k‘k**‘k*‘k*‘k****‘k*‘k****‘k*‘k*‘k*‘k‘k*‘k*‘k****‘k*‘k************************/
/* Get last node. There’s always at least one. %/
n = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_NUMANODE) ;
obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, n - 1);

size = 1024x1024;

m = hwloc_alloc_membind(topology, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

hwloc_free (topology, m, size);

m = malloc(size);

hwloc_set_area_membind(topology, m, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

free(m);

/+ Destroy topology object. x/
hwloc_topology_destroy (topology);

return 0;

}
hwloc provides a pkg—conf i g executable to obtain relevant compiler and linker flags. See Compiling software on top of hwloc's C API
for details on building program on top of hwloc's APl using GNU Make or CMake.

On a machine 2 processor packages — each package of which has two processing cores — the output from running
hwloc-hello could be something like the following:

shell$./hwloc-hello

Generated by Doxygen

1.5 Questions and Bugs 9

*x% ObJjects at level 0
Index 0: Machine
*x% Objects at level 1
Index 0: Package#0
Index 1: Package#l
**x Objects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
*x%x Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
*x% Printing overall tree
Machine
Package#0
Core#0
PU#0
Core#l
PU#1
Package#1l
Core#3
PU#2
Core#2
PU#3
x 2 package (s)
*%% Logical processor 0 has 0 caches totaling OKB
shells

1.5 Questions and Bugs

Bugs should be reported in the tracker (https://github.com/open-mpi/hwloc/1issues). Opening a new

issue automatically displays lots of hints about how to debug and report issues.

Questions may be sent to the users or developers mailing lists (https://www.open-mpi.org/community/lists/hwloc.«
php).

There is also a #hwloc IRC channel on Libera Chat (1rc.libera.chat).

1.6 History / Credits

hwloc is the evolution and merger of the libtopology project and the Portable Linux Processor Affinity (PLPA) (https«
://www.open-mpi.org/projects/plpa/) project. Because of functional and ideological overlap, these two
code bases and ideas were merged and released under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the Inria Runtime Team-Project. PLPA was initially developed by the Open MPI
development team as a sub-project. Both are now deprecated in favor of hwloc, which is distributed as an Open MPI
sub-project.

Generated by Doxygen

https://github.com/open-mpi/hwloc/issues
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/projects/plpa/
https://www.open-mpi.org/projects/plpa/

10

Hardware Locality

Generated by Doxygen

Chapter 2

Installation

hwloc (https://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is hosted
as a sub-project of the overall Open MPI project (https://www.open-mpi.org/). Note that hwloc does not
require any functionality from Open MPI — it is a wholly separate (and much smaller!) project and code base. It just
happens to be hosted as part of the overall Open MPI project.

2.1 Basic Installation

Installation is the fairly common GNU-based process:

shell$./configure --prefix=...
shell$ make
shell$ make install

The hwloc command-line tool "Istopo” produces human-readable topology maps, as mentioned above. Running the
"Istopo" tool is a good way to check as a graphical output whether hwloc properly detected the architecture of your node.

2.2 Optional Dependencies

Istopo may also export graphics to the SVG and "fig" file formats. Support for PDF, Postscript, and PNG exporting is
provided if the "Cairo" development package (usually cairo-devel or 1ibcairo2-dev) can be found in "Istopo”
when hwloc is configured and build.

The hwloc core may also benefit from the following development packages:

* libpciaccess for full 1/0 device discovery (1ibpciaccess-devel or libpciaccess—dev package). On
Linux, PCI discovery may still be performed (without vendor/device names) even if libpciaccess cannot be used.

+ AMD or NVIDIA OpenCL implementations for OpenCL device discovery.
« the NVIDIA CUDA Toolkit for CUDA device discovery. See How do | enable CUDA and select which CUDA version to use?.

 the NVIDIA Management Library (NVML) for NVML device discovery. It is included in CUDA since version 8.0.
Older NVML releases were available within the NVIDIA GPU Deployment Kit from https://developer.«+
nvidia.com/gpu-deployment-kit .

» the NV-CONTROL X extension library (NVCitrl) for NVIDIA display discovery. The relevant development pack-

age is usually 11bXNVCtrl-devel or libxnvctrl—-dev. It is also available within nvidia-settings from

ftp://download.nvidia.com/XFree86/nvidia-settings/ and https://github.«
com/NVIDIA/nvidia-settings/ .

« the AMD ROCm SMI library for RSMI device discovery. The relevant development package is usually
rocm-smi-1ib64 or librocm-smi-dev. See How do | enable ROCm SMI and select which version to use?.

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/
https://developer.nvidia.com/gpu-deployment-kit
https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

12 Installation

« the oneAPI Level Zero library. The relevant development package is usually level-zero-dev or
level-zero—-devel. The implementation must be recent enough to support zesDriverGetDevice«
ByUuidExp ()

« libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import
XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to XML files
for details. The relevant development package is usually 1ibxml2-devel or 1ibxml2-dev.

* libudev on Linux for easier discovery of OS device information (otherwise hwloc will try to manually parse udev
raw files). The relevant development package is usually 1ibudev—-devel or libudev-dev.

« libtool's Itdl library for dynamic plugin loading if the native dlopen cannot be used. The relevant development
package is usually 1ibtool-1tdl-devel or 1ibltdl-dev.

PCI and XML support may be statically built inside the main hwloc library, or as separate dynamically-loaded plugins
(see the Components and plugins section).

Also note that if you install supplemental libraries in non-standard locations, hwloc's configure script may not be able
to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS, or PKG_CONFIG_PATH
values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc's configure script may not find it by default. Try
adding PKG_CONFIG_PATH to the ./configure command line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will not be used (remember that hwloc
is BSD-licensed).

2.3 Installing from a Git clone

Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required when building from a Git clone.
Nightly development snapshots are available on the web site, they can be configured and built without any need for Git
or GNU Autotools.

Generated by Doxygen

Chapter 3

Compiling software on top of hwiloc's C API

A program using the hwloc C API (for instance with hwloc-hello.c presented in APl Example) may be built with
standard development tools. pkg—config provides easy ways to retrieve the required compiler and linker flags as
described below, but it is not mandatory.

3.1 Compiling on top of hwloc's C APl with GNU Make

Here's an example of Makefile for building hwloc-hello. c with GNU Make:

CFLAGS += S$(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --1libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

3.2 Compiling on top of hwloc's C APl with CMake

Here's an example de CMakeLists.txt which shows variables obtained from pkg-config and how to use them:

cmake_minimum_required (VERSION 3.6)
project (TEST_HWLOC C)

include (FindPkgConfig)
if (PKG_CONFIG_FOUND)
pkg_search_module (HWLOC REQUIRED IMPORTED_TARGET hwloc)
else (PKG_CONFIG_FOUND)
message (FATAL_ERROR "FindHWLOC needs pkg-config program and PKG_CONFIG_PATH must contain the path to hwloc.pc £
endif (PKG_CONFIG_FOUND)

add_executable (hwloc-hello hwloc-hello.c)
target_link_libraries (hwloc-hello PRIVATE PkgConfig::HWLOC)

The project may be built with:

cmake -B build
cmake —--build build --verbose

The built binary is then available under build/hwloc-hello.

Generated by Doxygen

14

Compiling software on top of hwloc's C API

Generated by Doxygen

Chapter 4

Terms and Definitions

4.1 Obijects

Object Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA memory node, etc. The different
types detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see Hierarchy, Tree and Levels).

Object Kind There are four kinds of Objects: Memory (NUMA nodes and Memory-side caches), I/O (Bridges, PCl and
OS devices), Misc, and Normal (everything else, including Machine, Package, Die, Core, PU, CPU Caches, etc.).
Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc don't.

See also

Kinds of object Type.

Processing Unit (PU) The smallest processing element that can be represented by a hwloc object. It may be a single-
core processor, a core of a multicore processor, or a single thread in a SMT processor (also sometimes called
"Logical processor", not to be confused with "Logical index of a processor"). hwloc's PU acronym stands for
Processing Unit.

Package A processor Package is the physical package that usually gets inserted into a socket on the motherboard. It
is also often called a physical processor or a CPU even if these names bring confusion with respect to cores and
processing units. A processor package usually contains multiple cores (and may also be composed of multiple
dies). hwloc Package objects were called Sockets up to hwloc 1.10.

NUMA Node An object that contains memory that is directly and byte-accessible to the host processors. It is usually
close to some cores as specified by its CPU set. Hence it is attached as a memory child of the object that groups
those cores together, for instance a Package objects with 4 Core children (see Hierarchy, Tree and Levels).

Memory-side Cache A cache in front of a specific memory region (e.g. a range of physical addresses). It caches all
accesses to that region without caring about which core issued the request. This is the opposite of usual CPU
caches where only accesses from the local cores are cached, without caring about the target memory.

In hwloc, memory-side caches are memory objects placed between their local CPU objects (parent) and the target
NUMA node memory (child).

4.2 Indexes and Sets

OS or physical index The index that the operating system (OS) uses to identify the object. This may be completely
arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may depend on the BIOS con-
figuration. That is why hwloc almost never uses them, only in the default Istopo output (P #x) and cpuset masks.
See also Should | use logical or physical/OS indexes? and how?.

Generated by Doxygen

16 Terms and Definitions

Logical index Index to uniquely identify objects of the same type and depth, automatically computed by hwloc ac-
cording to the topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent logical
indexes are adjacent in the topology. That is why hwloc almost always uses it in its API, since it expresses
logical proximity. They can be shown (as L#x) by 1stopo thanks to the —1 option. This index is always
linear and in the range [0, num_objs_same_type_same_level-1]. Think of it as ““cousin rank." The ordering
is based on topology first, and then on OS CPU numbers, so it is stable across everything except firmware
CPU renumbering. "Logical index" should not be confused with "Logical processor". A "Logical processor"
(which in hwloc we rather call "processing unit" to avoid the confusion) has both a physical index (as chosen
arbitrarily by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc). See also
Should | use logical or physical/OS indexes? and how?.

CPU set The set of processing units (PU) logically included in an object (if it makes sense). They are always expressed
using physical processor numbers (as announced by the OS). They are implemented as the hwloc_bitmap_t
opaque structure. hwloc CPU sets are just masks, they do not have any relation with an operating system actual
binding notion like Linux' cpusets. 1/O and Misc objects do not have CPU sets while all Normal and Memory
objects have non-NULL CPU sets.

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are always ex-
pressed using physical node numbers (as announced by the OS). They are implemented with the hwloc_bitmap_t
opaque structure. as bitmaps. 1/0 and Misc objects do not have Node sets while all Normal and Memory objects
have non-NULL nodesets.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or memory nodes
(Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

4.3 Hierarchy, Tree and Levels

Parent object The object logically containing the current object, for example because its CPU set includes the CPU
set of the current object. All objects have a non-NULL parent, except the root of the topology (Machine object).

Ancestor object The parent object, or its own parent, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is included in the
CPU set of the current object. Each object may also contain separated lists for Memory, 1/0O and Misc object
children.

Arity The number of normal children of an object. There are also specific arities for Memory, /0 and Misc children.

Sibling objects Objects in the same children list, which all of them are normal children of the same parent, or all of
them are Memory children of the same parent, or I/O children, or Misc. They usually have the same type (and
hence are cousins, as well). But they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range [0, arity-1]
(respectively memory_arity, io_arity or misc_arity for Memory, 1/0 and Misc children of a parent).

Cousin objects Obijects of the same type (and depth) as the current object, even if they do not have the same parent.

Level Set of objects of the same type and depth. All these objects are cousins.
Memory, I/O and Misc objects also have their own specific levels and (virtual) depth.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a child is
equal to the parent depth plus one, and an object depth is also equal to the number of parent/child links between
the root object and the given object. If the topology is asymmetric, the difference between some parent and child
depths may be larger than one when some intermediate levels (for instance groups) are missing in only some
parts of the machine.

The depth of the Machine object is always 0 since it is always the root of the topology. The depth of PU objects is
equal to the number of levels in the topology minus one.

Memory, I/0O and Misc objects also have their own specific levels and depth.

Generated by Doxygen

4.3 Hierarchy, Tree and Levels 17

The following diagram can help to understand the vocabulary of the relationships by showing the example of a machine
with two dual core packages (with no hardware threads); thus, a topology with 5 levels. Each box with rounded corner
corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical_index, etc.), and
arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU objects at the bottom (depth 4
here).

Objects of the same level (cousins) are listed in red boxes and linked with red arrows. Children of the same parent
(siblings) are linked with blue arrows.

The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled. See
What happens if my topology is asymmetric? for more information about such strange topologies.

Machine .depth =0
level Jogical_index =0
depth=0 .0s_index = -1
.sibling_rank=0
) e NUMA Node
.arity=2
. e .depth =-3
.memory_arity=1 me 3 .
 —c~~——— === _ Jogical_index =0
cl_lildren[O children[1] parent .os_index =0

last_child .sibling_rank = 0
parent
Package Package
level next_sibling .depth=1
depth=1 Jogical_index =0 T Jogical_index = 1
.0s_index =0 next_cousin prev_sibling .os_index = 1
.sibling_rank=0 —1 .sibling_rank=1
.arity=2 prev_cousin .arity=2
children[0] children[0] hildren[1]‘

first_child

first_child ast_child

parent parent parent
Cache Cache o Cache Cache
level depth =2 next_sibling 7o =2 depth =2
depth=2 Jogical_index =0 prev_sibling | -logical_index = 1 Jogical_index =2 \ next_sibling
.o'sb_ll'ndex :1? 0 next_cousin .o'sb_ll'ndex :kl] next_cousin .o'sb_ll'ndex :l? 0
.sibling_rank= .sibling_rank= .sibling_rank=
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0]
first_child first_child first_child
last_child last_child last_child
parent parent parent parent
Core Core Core Core \ Core
level .depth=3 .depth=3 .depth=3 prev Qibk .depth=3
depth=3 Jogical_index = 0 Jogical_index = 1 Jogical_index = 2 - Jogical_index =3
.0s_index =0 R .os_index =1 S .0s_index =0 S .0s_index = 1
L. next_cousin L. next_cousin . next_cousin L.
.sibling_rank=0 »| .sibling_rank=0 »| .sibling_rank=0 » sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0] children[0]
first_child first_child first_child first_child
last_child . last_child . last_child . last_child .
paren paren paren paren
PU PU PU PU PU
level .depth =4 .depth =4 .depth=4 .depth =4
depth=4 Jogical_index =0 Jogical_index = 1 Jogical_index =2 Jogical_index =3
.0s_index =0 S .0s_index =2 S .0s_index =1 — .0s_index =3
. next_cousin . next_cousin . next_cousin .
.sibling_rank=0 »| _sibling_rank=0 »| .sibling_rank=0 »| .sibling_rank=0
.arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0

It should be noted that for PU objects, the logical index — as computed linearly by hwloc — is not the same as the OS
index.

The NUMA node is on the side because it is not part of the main tree but rather attached to the object that corresponds
to its locality (the entire machine here, hence the root object). It is attached as a Memory child (in green) and has a

Generated by Doxygen

18 Terms and Definitions

virtual depth (negative). It could also have siblings if there were multiple local NUMA nodes, or cousins if other NUMA
nodes were attached somewhere else in the machine.
I/O or Misc objects could be attached in a similar manner.

Generated by Doxygen

Chapter 5

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully
documented in its own manual page; the following is a summary of the available command line tools.

5.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-Is) displays the hierarchical topology map of the current system. The output may be
graphical, ascii-art or textual, and can also be exported to numerous file formats such as PDF, PNG, XML, and others.
Advanced graphical outputs require the "Cairo" development package (usually cairo-devel or libcairo2-dev).
Istopo and Istopo-no-graphics accept the same command-line options. However, graphical outputs are only available in
Istopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are supported in both Istopo
and Istopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the ——ps option).

Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing those
systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file and display
it on a different system).

5.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an
executable to specific cores (or packages or bitmaps or ...). The hwloc-bind(1) man page provides much more detail on
what is possible.

hwloc-bind can also be used to retrieve the current process' binding, or retrieve the last CPU(s) where a process ran, or
operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or cpusets (bitmaps as reported by
hwloc-calc or hwloc-distrib).

5.3 hwloc-calc

hwloc-calc is hwloc's Swiss Army Knife command-line tool for converting things. The input may be either objects or
cpusets (bitmaps as reported by another hwloc-calc instance or by hwloc-distrib), that may be combined by addition,
intersection or subtraction. The output may be expressed as:

 a cpuset bitmap: This compact opaque representation of objects is useful for shell scripts etc. It may passed to
hwloc command-line tools such as hwloc-calc or hwloc-bind, or to hwloc command-line options such as 1stopo
——restrict.

» a nodeset bitmap: Another opaque representation that represents memory locality more precisely, especially if
some NUMA nodes are CPU less or if multiple NUMA nodes are local to the same CPUs.

Generated by Doxygen

20 Command-Line Tools

» the amount of the equivalent hwloc objects from a specific type, or the list of their indexes. This is useful for
iterating over all similar objects (for instance all cores) within a given part of a platform.

+ a hierarchical description of objects, for instance a thread index within a core within a package. This gives a better
view of the actual location of an object.

Moreover, input and/or output may be use either physical/OS object indexes or as hwloc's logical object indexes. It
eases cooperation with external tools such as taskset or numactl by exporting hwloc specifications into list of processor
or NUMA node physical indexes. See also Should | use logical or physical/OS indexes? and how?.

5.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific attributes. It is intended to be used with
tools such as grep for filtering certain attribute lines. When no object is specified, or when ——topology is passed,
hwloc-info prints a summary of the topology. When ——support is passed, hwloc-info lists the supported features for
the topology.

5.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across the machine for the given number
of processes. These strings may be used with hwloc-bind to run processes to maximize their memory bandwidth by
properly distributing them across the machine.

5.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default,
hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

5.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information (see Custom string infos for de-
tails) or Misc children objects. It may also add distances, memory attributes, etc. to the topology. It reads an input
topology from a XML file and outputs the annotated topology as another XML file.

5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences between
topologies instead of entire topologies.

5.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privileged) some topology and locality

information from raw hardware files (SMBIOS and ACPI tables) to human-readable and world-accessible files that the

hwloc library will later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi process
See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

Generated by Doxygen

5.10 hwloc-gather-topology and hwloc-gather-cpuid 21

5.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a tarball
(and the corresponding Istopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions on the current machine into a
directory.

The output of hwloc-gather-cpuid is included in the tarball saved by hwloc-gather-topology when running on Linux/x86.
These files may be used later (possibly offline) for simulating or debugging a machine without actually running on it.

Generated by Doxygen

22

Command-Line Tools

Generated by Doxygen

Chapter 6

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_topology_set_xml()
had been called. This file may have been generated earlier with Istopo file.xml. For convenience, this backend
provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks,
HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the under-
lying system. See also Importing and exporting topologies from/to XML files.

HWLOC_SYNTHETIC=synthetic_description enforces the discovery through a synthetic description string as if
hwloc_topology_set_synthetic() had been called. For convenience, this backend provides empty binding hooks
which just return success. See also Synthetic topologies.

HWLOC_XML_VERBOSE-=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or synthetic topology backends. hwloc
XML backends (see Importing and exporting topologies from/to XML files) can emit some error messages to the
error output stream. Enabling these verbose messages within hwloc can be useful for understanding failures to
parse input XML topologies. Similarly, enabling verbose messages in the synthetic topology backend can help
understand why the description string is invalid. See also Synthetic topologies.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_thissystem(), as if HWLOC_TOPOLOGY_FLAG_IS_THISSY¢

was set with hwloc_topology_set_flags(). It means that it makes hwloc assume that the selected backend pro-
vides the topology for the system on which we are running, even if it is not the OS-specific backend but the XML
backend for instance. This means making the binding functions actually call the OS-specific system calls and
really do binding, while the XML backend would otherwise provide empty hooks just returning success. This can
be used for efficiency reasons to first detect the topology once, save it to a XML file, and quickly reload it later
through the XML backend, but still having binding functions actually do bind. This also enables support for the
variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES.

HWLOC_THISSYSTEM_ALLOWED_RESOURCES=1 Get the set of allowed resources from the native operating sys-
tem even if the topology was loaded from XML or synthetic description, as if HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWEI
was set with hwloc_topology_set_flags(). This variable requires the topology to match the current system (see the
variable HWLOC_THISSYSTEM). This is useful when the topology is not loaded directly from the local machine
(e.g. for performance reason) and it comes with all resources, but the running process is restricted to only a part
of the machine (for instance because of Linux Cgroup/Cpuset).

HWLOC_ALLOW=all Totally ignore administrative restrictions such as Linux Cgroups and consider all resources
(PUs and NUMA nodes) as allowed. This is different from setting HWLOC_TOPOLOGY_FLAG_INCLUDE_+
DISALLOWED which gathers all resources but marks the unavailable ones as disallowed.

HWLOC_HIDE_ERRORS=1 enables or disables verbose reporting of errors. The hwloc library may issue warnings
to the standard error stream when it detects a problem during topology discovery, for instance if the operating
system (or user) gives contradictory topology information.

Generated by Doxygen

24 Environment Variables

By default (1), hwloc only shows critical errors such as invalid hardware topology information or invalid configura-
tion. If set to 0 (default in Istopo), more errors are displayed, for instance a failure to initialize CUDA or NVML. If
set to 2, no hwloc error messages are shown.

Note that additional verbose messages may be enabled with other variables such as HWLOC_GROUPING_«+
VERBOSE.

HWLOC_USE_NUMA_DISTANCES=7 enables or disables the use of NUMA distances. NUMA distances and memory
target/initiator information may be used to improve the locality of NUMA nodes, especially CPU-less nodes. Bits
in the value of this environment variable enable different features: Bit 0 enables the gathering of NUMA distances
from the operating system. Bit 1 further enables the use of NUMA distances to improve the locality of CPU-less
nodes. Bit 2 enables the use of target/initiator information.

HWLOC_MEMTIERS_GUESS=none

HWLOC_MEMTIERS_GUESS=all Disable or enable all heuristics to guess memory subtypes and tiers. By default,
hwloc only uses heuristics that are likely correct and disables those that are unlikely.

HWLOC_MEMTIERS=0x0f=HBM;0xf=DRAM Enforce the memory tiers from the given semi-colon separated list.
Each entry specifies a bitmask (nodeset) of NUMA nodes and their subtype. Nodes not listed in any entry are not
placed in any tier.

If an empty value or none is given, tiers are entirely disabled.

HWLOC_MEMTIERS_REFRESH=1 Force the rebuilding of memory tiers. This is mostly useful when importing a XML
topology from an old hwloc version which was not able to guess memory subtypes and tiers.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc uses distance
matrices between objects (either read from the OS or given by the user) to find groups of close objects. These
groups are described by adding intermediate Group objects in the topology. Setting this environment variable to
0 will disable this grouping. This variable supersedes the obsolete HWLOC_IGNORE_DISTANCES variable.

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default, objects may
be grouped if their distances form a minimal distance graph. When setting this variable to 0.02, and when
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE is given, these distances do not have to be strictly
equal anymore, they may just be equal with a 2% error. If set to t ry instead of a numerical value, hwloc will try
to group with perfect accuracy (0, the default), then with 0.01, 0.02, 0.05 and finally 0.1. Numbers given in this
environment variable should always use a dot as a decimal mark (for instance 0.01 instead of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages during grouping. If this variable is
set to 1, some debug messages will be displayed during distance-based grouping of objects even if debug was
not specific at configure time. This is useful when trying to find an interesting distance grouping accuracy.

HWLOC_CPUKINDS_RANKING=default change the ranking policy for CPU kinds. hwloc tries to rank CPU kinds
that are energy efficiency first, and then CPUs that are rather high-performance and power hungry.
By default, if available, the OS-provided efficiency is used for ranking. Otherwise, the frequency and/or core types
are used when available.
This environment variable may be set to coretype+frequency, coretype+frequency_strict,
coretype, frequency, frequency_base, frequency_max, forced_efficiency, no_«
forced_efficiency,default, or none.

HWLOC_CPUKINDS_ MAXFREQ=adjust=10 change the use of the max frequency in the Linux backend. hwloc tries
to read the base and max frequencies of each core on Linux. Some hardware features such as Intel Turbo Boost
Max 3.0 make some cores report slightly higher max frequencies than others in the same CPU package. Despite
having slightly different frequencies, these cores are considered identical instead of exposing an hybrid CPU.
Hence, by default, hwloc uniformizes the max frequencies of cores that have the same base frequency (higher
values are downgraded by up to 10%).

If this environment variable is set to ad just =X, the 10% threshold is replaced with X. If set to 1, max frequencies
are not adjusted anymore, some homogeneous processors may appear hybrid because of this. If set to 0, max
frequencies are entirely ignored.

Generated by Doxygen

25

HWLOC_CPUKINDS_HOMOGENEOUS=0 uniformize max frequency, base frequency and Linux capacity to force a
single homogeneous kind of CPUs. This is enabled by default on NVIDIA Grace but may be disabled if set to 0
(or enabled on other platforms if set to 1).

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file changes the locality of I/O devices behing the specified PCI
buses. If no I/O locality information is available or if the BIOS reports incorrect information, it is possible to
move a I/O device tree (OS and/or PCl devices with optional bridges) near a custom set of processors.

Localities are given either inside the environment variable itself, or in the pointed file. They may be separated
either by semi-colons or by line-breaks. Invalid localities are silently ignored, hence it is possible to insert com-
ments between actual localities.

Each locality contains a domain/bus specification (in hexadecimal numbers as usual) followed by a whitespace
and a cpuset:

* 0001 <cpuset> specifies the locality of all buses in PCI domain 0000.
* 0000:0f <cpuset> specifies only PCI bus 0f in domain 0000.
* 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a) within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses behind a bridge (including primary,
secondary and subordinate buses). For instance, if hostbridge 0000:00 is above other bridges/switches with buses
0000:01 to 0000:09, the variable should be HWLOC_PCI_LOCALITY="0000:00-09 <cpuset>". It supersedes the
old HWLOC_PCI_0000_00_LOCALCPUS=<cpuset> which only works when hostbridges exist in the topology.
If the variable is defined to empty or invalid, no forced PCI locality is applied but hwloc's internal automatic locality
quirks are disabled, which means the exact PCI locality reported by the platform is used.

HWLOC_X86_TOPOEXT_NUMANODES=0 use AMD topoext CPUID leaf in the x86 backend to detect NUMA nodes.
When using the x86 backend, setting this variable to 1 enables the building of NUMA nodes from AMD processor
CPUID instructions. However this strategy does not always reflect BIOS configuration such as NUMA interleaving.
And node indexes may be different from those of the operating system. Hence this should only be used when OS
backends are wrong and the user is sure that CPUID returns correct NUMA information.

HWLOC_KEEP_NVIDIA_GPU_NUMA_NODES=0 show or hide NUMA nodes that correspond to NVIDIA GPU mem-
ory. By default they are ignored on POWER platforms to avoid interleaved memory being allocated on GPU by
mistake.

Setting this environment variable to 0 hides the NUMA nodes (default on POWER). Setting to 1 exposes these
NUMA nodes (default on non-POWER platforms such as NVIDIA Grace Hopper).

These NUMA nodes may be recognized by the GPUMemory subtype. They also have a PCIBusID info attribute
to identify the corresponding GPU.

HWLOC_KNL_MSCACHE_L3=0 Expose the KNL MCDRAM in cache mode as a Memory-side Cache instead of a L3.
hwloc releases prior to 2.1 exposed the MCDRAM cache as a CPU-side L3 cache. Now that Memory-side caches
are supported by hwloc, it is still exposed as a L3 by default to avoid breaking existing applications. Setting this
environment variable to 1 will expose it as a proper Memory-side cache.

HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=0 Expose Windows processor groups as hwloc Group objects.
By default, these groups are disabled because they may be incompatible with the hierarchy of resources that hwloc
builds (leading to warnings). Setting this variable to 1 reenables the addition of these groups to the topology.

This variable does not impact the querying of Windows processor groups using the dedicated API in
hwloc/windows.h, this feature is always supported.

HWLOC_ANNOTATE_GLOBAL_COMPONENTS=0 Allow components to annotate the topology even if they are
usually excluded by global components by default. Setting this variable to 1 and also setting HWLOC_ «+
COMPONENTS=xml, pci, stop enables the addition of PCl vendor and model info attributes to a XML topology
that was generated without those names (if pciaccess was missing).

Generated by Doxygen

26 Environment Variables

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified Linux filesys-
tem root instead of the main file-system root. This directory may have been saved previously from another
machine with hwloc—-gather-topology.

One should likely also set HWLOC_COMPONENTS=11inux, stop so that non-Linux backends are disabled (the
—1 option of command-line tools takes care of both).

Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the
underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/ forces the x86 backend to read dumped CPUIDs from the given directory
instead of executing actual x86 CPUID instructions. This directory may have been saved previously from another
machine with hwloc—gather-cpuid.

One should likely also set HWLOC_COMPONENTS=x86, stop so that non-x86 backends are disabled (the -1
option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty binding
hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM
should be set 1 in the environment too, to assert that the loaded CPUID dump is really the underlying system.

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/ loads files dumped by hwloc—-dump-hwdata (on
Linux) from the given directory. The default dump/load directory is configured during build based on --runstatedir,
--localstatedir, and --prefix options. It usually points to /var/run/hwloc/ in Linux distribution packages, but
it may also pointto Sprefix/var/run/hwloc/ when manually installing and only specifying --prefix.

HWLOC_COMPONENTS=list,of,components forces a list of components to enable or disable. Enable or disable the
given comma-separated list of components (if they do not conflict with each other). Component names prefixed
with — are disabled (a single phase may also be disabled).

Once the end of the list is reached, hwloc falls back to enabling the remaining components (sorted by priority)
that do not conflict with the already enabled ones, and unless explicitly disabled in the list. If stop is met, the
enabling loop immediately stops, no more component is enabled.

If xm1l or synthetic components are selected, the corresponding XML filename or synthetic description string
should be pass in HWLOC_XMLFILE or HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components, it takes precedence over environ-
ment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific component is loaded first, all
components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about components. Display messages when
components are registered or enabled. This is the recommended way to list the available components with their
priority (all of them are registered at startup).

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default search directory for plugins. By default,
$libdir/hwloc is used. The variable may contain several colon-separated directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins. List which directories are scanned,
which files are loaded, and which components are successfully loaded.

HWLOC_PLUGINS_BLACKLIST=filename1,filename2,... prevents plugins from being loaded if their filename (with-
out path) is listed. Plugin filenames may be found in verbose messages outputted when HWLOC_PLUGINS_«
VERBOSE=1.

HWLOC_DEBUG_VERBOSE=0 disables all verbose messages that are enabled by default when —enable-debug
is passed to configure. When set to more than 1, even more verbose messages are displayed. The default is 1.

Generated by Doxygen

Chapter 7

CPU and Memory Binding Overview

Binding tasks and data buffers is hwloc's second main goal after discovering and exposing the hardware topology. hwloc
defines APIs to bind threads and processes to cores and processing units (see CPU binding), and to bind memory
buffers to NUMA nodes (see Memory binding). Some examples are available under doc/examples/ in the source tree.
Sections below provide high-level insights on how these APIs work.

7.1 Binding Policies and Portability

hwloc binding APIs are portable to multiple operating systems. However operating systems sometimes define slightly
different policies, which means hwloc's behavior might slightly differ.

On the CPU binding side, OSes have different constraints of which sets of PUs can be used for binding (only full cores,
random sets of PUs, etc.). Moreover the HWLOC_CPUBIND_STRICT may be given to clarify what to do in some corner
cases. It is recommended to read CPU binding for details.

On the memory binding side, things are more complicated. First, there are multiple API for binding existing memory
buffers, allocating new ones, etc. Second, multiple policies exist (first-touch, bind, interleave, etc.) but some of them
are not implemented by all operating systems. Third, some of these policies have slightly different meanings. For in-
stance, hwloc's bind (HWLOC_MEMBIND_BIND) uses Linux' MPOL_PREFERRED_MANY (or MPOL_PREFERRED)
by default, but it switches to MPOL_BIND when strict binding is requested (HWLOC_MEMBIND_STRICT). Reading
Memory binding is strongly recommended.

7.2 Joint CPU and Memory Binding (or not)

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means
that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory binding
policy may change the CPU binding of the current thread. This is often not a problem for applications, so by default
hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the
HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU binding.
Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc from using OS
functions would change the memory binding policy. Of course, using these flags will reduce hwloc's overall support for
binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory, touching
each page in the allocated memory, and then changing the CPU binding. The already-really-allocated memory will then
be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy gets changed by the
CPU binding order, the already-allocated memory will not change with it. When binding and allocating further memory,
the CPU binding should be performed again in case the memory binding altered the previously-selected CPU binding.

Generated by Doxygen

28 CPU and Memory Binding Overview

7.3 Current Memory Binding Policy

Not all operating systems support the notion of a "current" memory binding policy for the current process, but such
operating systems often still provide a way to allocate data on a given node set. Conversely, some operating systems
support the notion of a "current” memory binding policy and do not permit allocating data on a specific node set without
changing the current policy and allocate the data. To provide the most powerful coverage of these facilities, hwloc
provides:

« functions that set/get the current memory binding policies (if supported): hwloc_set_membind(), hwloc_get_membind(),
hwloc_set_proc_membind() and hwloc_get_proc_membind()

« a function that allocates memory bound to specific node set without changing the current memory binding policy
(if supported): hwloc_alloc_membind().

* a helper which, if needed, changes the current memory binding policy of the process in order to obtain memory
binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage separately the global process binding
policy and directed allocation, or use the third set of functions if it does not care about the process memory binding
policy. Again, reading Memory binding is strongly recommended.

Generated by Doxygen

Chapter 8

/0 Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report their locality
as well. This is useful for placing I/O intensive applications on cores near the I/O devices they use, or for gathering
information about all platform components.

8.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) for performance reasons. It can be enabled by changing the filtering
of I/O object types to HWLOC_TYPE_FILTER_KEEP_IMPORTANT or HWLOC_TYPE_FILTER_KEEP_ALL before
loading the topology, for instance with hwloc_topology_set_io_types_filter ().

Note that I/0O discovery requires significant help from the operating system. The pciaccess library (the development
package is usually 1ibpciaccess—devel or libpciaccess—dev) is needed to fully detect PCl devices and
bridges/switches. On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be used. But
it misses PCI device names. Moreover, some operating systems require privileges for probing PCl devices, see
Does hwloc require privileged access? for details.

The actual locality of I/O devices is only currently detected on Linux. Other operating system will just report I/O devices
as being attached to the topology root object.

8.2 1/0 objects

When 1/O discovery is enabled and supported, some additional objects are added to the topology. The corresponding
I/O object types are:

* HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such as the sda drive or the eth0
network interface. See OS devices.

* HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_BRIDGE build up a PCI hierarchy made of bridges (that may
be actually be switches) and devices. See PCI devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_type_filter ().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to match their actual physical location.
For instance, if a I/0 hub (or root complex) is physically connected to a package, the corresponding hwloc bridge object
(and its PCI bridges and devices children) is inserted as a child of the corresponding hwloc Package object. These
children are not in the normal children list but rather in the I/0-specific children list.

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the
user applications for binding. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O
objects are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such as
hwloc_get_next_obj_by type(). However, hwloc offers some dedicated helpers such as hwloc_get_next_pcidev() and
hwloc_get_next_osdev() for convenience (see Finding I/O objects).

Generated by Doxygen

30 I1/0 Devices

8.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a user-space application can
hardly find out which PCI device it is actually using. Applications rather use software handles (such as the eth0 net-
work interface, the sda hard drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software devices
(HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached directly to normal objects. Indeed
some OS devices are not related to PCI. For instance, NVDIMM block devices (such as pmemOs on Linux) are directly
attached near their NUMA node (I/O child of the parent whose memory child is the NUMA node). Also, if hwloc could
not discover PCI for some reason, PCl-related OS devices may also be attached directly to normal objects.

Finally, OS subdevices may be exposed as OS devices children of another OS device. This is the case of LevelZero
subdevices for instance.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or mix4_0. However, this ability is
currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional /O components using external libraries. For instance
proprietary graphics drivers do not expose any named OS device, but hwloc may still create one OS object per software
handle when supported. For instance the opencl and cuda components may add some opencl/0d0 and cuda0 OS
device objects.

Here is a list of OS device objects commonly created by hwloc components when I/O discovery is enabled and sup-
ported.

 Hard disks or non-volatile memory devices (HWLOC_OBJ_OSDEV_BLOCK)
— sda or dax2.0 (Linux component)
* Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)

— eth0, wlan0, ib0 (Linux component)

— hsn0 with "Slingshot" subtype for HPE Cray HSNs (Linux component).
+ OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_OSDEV_OPENFABRICS)

— mix5_0, hfi1_0, qib0, usnic_0 (Linux component)
— bxi0 with "BXI" subtype for Atos/Bull BXI HCAs (Linux component) even if those are not really OpenFabrics.
* GPUs (HWLOC_OBJ_OSDEV_GPU)
— rsmi0 for the first RSMI device ("RSMI" subtype, from the RSMI component, using the AMD ROCm SMI
library)

— nvmlO for the first NVML device ("NVML" subtype, from the NVML component, using the NVIDIA Manage-
ment Library)

— 0.0 for the first display ("Display" subtype, from the GL component, using the NV-CONTROL X extension
library, NVCtrl)

— card0 and renderD128 for DRM device files (from the Linux component, filtered-out by default because
considered non-important)
» Co-Processors (HWLOC_OBJ_OSDEV_COPROC)
— opencl0do for the first device of the first OpenCL platform, opencl1d3 for the fourth device of the second
OpenCL platform ("OpenCL" subtype, from the OpenCL component)

— ze0 for the first Level Zero device ("LevelZero" subtype, from the levelzero component, using the oneAPI
Level Zero library), and ze0.1 for its second subdevice (if any).

— cuda0 for the first NVIDIA CUDA device ("CUDA" subtype, from the CUDA component, using the NVIDIA
CUDA Library)

— ve0 for the first NEC Vector Engine device ("VectorEngine" subtype, from the Linux component)

Generated by Doxygen

8.4 PCI devices and bridges 31

« DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

— dmaOchan0 (Linux component) when all OS devices are enabled (HWLOC_TYPE_FILTER_KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the example below).
See also Interoperability With Other Software for managing these devices without considering them as hwloc objects.

8.4 PCl devices and bridges

A PCI hierarchy is usually organized as follows: A hostbridge object (HWNLOC_OBJ_BRIDGE object with upstream
type Host and downstream type PCI) is attached below a normal object (usually the entire machine or a NUMA node).
There may be multiple hostbridges in the machine, attached to different places, but all PCI devices are below one of
them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to PCI switches) or PCI devices
(HWLOC_OBJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCI device depends on the
machine.

8.5 Consulting I/O devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by_type())
or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding I/O objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their
locality must be retrieved by walking up the object tree (through the parent link) until a non-1/O object is found (see
hwloc_get_non_io_ancestor_obj()). This normal object should have non-NULL CPU sets and node sets which describe
the processing units and memory that are immediately close to the 1/O device. For instance the path from a OS device
to its locality may go across a PCl device parent, one or several bridges, up to a Package node with the same locality.
Command-line tools are also aware of I/O devices. Istopo displays the interesting ones by default (passing ——no-io
disables it).

hwloc-calc and hwloc-bind may manipulate 1/0 devices specified by PCl bus ID or by OS device name.

* pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI device whose bus ID is given.
* os=eth0 is replaced by CPUs that are close to the 1/0 device whose software handle is called et hO0.

This enables easy binding of I/O-intensive applications near the device they use.

8.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected to the first package and NUMA
node.

Generated by Doxygen

32 /0 Devices
Machine (2466 total)
Package L&D Package L#¥1
NUMANcde L#0 P#0 (12GB) NUMANcde L#1 P#1 (12GE)
O—
L3 (8192KB) 04 — |0.2 | PCI01:00.0 L3 (B192KB)
L2 (256KB) || L2 (256KB) EEELLY L2 (256KB) || L2 (256KE)
L1 (32KB) L1 (32KB) 0.2 | PCI01:00.1 L1 (32KB) L1 (32KE)
Core L#0 Core L#1 e EEL Core L#2 Core L#3
PU L#0 PU L#1 —{— P L#2 PU L#3
PO P2 0.2 0.2 PCI03:00.0 P#1 P#3
Block sda
.--*:b—-—-—
PCI 04:03.0
0.1 | PCI 00:1f.2
2.0 | PCI 51:00.0
Met ib0 | | Netibl
Met mixd 0

Six interesting PCI devices were discovered (dark green boxes). However, hwloc found some corresponding software
devices (eth0, eth1, sda, mix4_0, ib0, and ib1 light grey boxes) for only four of these physical devices. The other ones
(PCI 04:03.0 and PCI 00:1f.2) are an unused IDE controller (no disk attached) and a graphic card (no corresponding
software device reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found for the last PCI device (PC/ 51:00.0).
Indeed this OpenFabrics HCA PCI device object contains one OpenFabrics software device (mix4_0) and two virtual
network interfaces (ib0 and ib7).

Here is the corresponding textual output:

Machine (24GB total)
Package L#0
NUMANode L#0 (P#0 12GB)
L3 L#0 (8192KB)
L2 L#0 (256KB)
L2 L#1 (256KB)
HostBridge
PCIBridge
PCI 01:00.0 (Ethernet)
Net "ethO"
PCI 01:00.1 (Ethernet)
Net "ethl"
PCIBridge
PCI 03:00.0 (RAID)
Block "sda"

+ L1 L#0
+ L1 L#l

(32KB) + Core L#0 + PU L#0
(32KB) + Core L#1 + PU L#1

(P#0)
(P#2)

Generated by Doxygen

8.6 Examples

33

PCIBridge
PCI 04:03.0 (VGA)

PCI 00:1f.2 (IDE)

PCI 51:00.0 (InfiniBand)
Net "ibO"
Net "ibl"

Net "mlx4_0O"
Package L#1
NUMANode L#1 (P#1 12GB)
L3 L#1 (8192KB)
L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

Generated by Doxygen

34

I1/0 Devices

Generated by Doxygen

Chapter 9

Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MI SC) either automatically or by the user.
This is a flexible way to annotate topologies with large sets of information since Misc objects may be inserted anywhere
in the topology (to annotate specific objects or parts of the topology), even below other Misc objects, and each of them
may contain multiple attributes (see also How do | annotate the topology with private notes?).

These Misc objects may have a subt ype field to replace Mi sc with something else in the Istopo output.

9.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the Misc object type is not filtered-out
anymore. This currently includes:

* Memory modules (DIMMs), on Linux when privileged and when dmi-sys£fs is supported by the kernel. These
objects have a subtype field of value MemoryModule. They are currently always attached to the root object.

Their attributes describe the DIMM vendor, model, etc. 1stopo -v displays them as:
Misc (MemoryModule) (P#1 DevicelLocation="Bottom-Slot 2 (right)" BankLocation="BANK 2" Vendor=Elpida
SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81UG8EFUO-GN-F ")

+ Displaying process binding in 1stopo —-top. These objects have a subt ype field of value Process and a
name attribute made of their PID and program name. They are attached below the object they are bound to. The

textual 1 stopo displays them as:
PU L#0 (P#0)
Misc (Process) 4445 myprogram

9.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be achieved with hwloc_topology_insert_misc_ob]
as well as hwloc-annotate command-line tool.

Generated by Doxygen

36

Miscellaneous objects

Generated by Doxygen

Chapter 10

Object attributes

10.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance their logical_index or os_<«
index (see Should | use logical or physical/OS indexes? and how?), depth or name.

The kind of object is first described by the ob j—>t ype generic attribute (an integer). OS devices also have a specific
obj->attr->osdev.type integer for distinguishing between NICs, GPUs, etc.

Objects may also have an optional obj—>subt ype pointing to a better description string (displayed by Istopo either
in place or after the main ob j—>type attribute):

* NUMA nodes: subtype DRAM (for usual main memory), HBM (high-bandwidth memory), SPM (specific-purpose
memory, usually reserved for some custom applications), NVM (non-volatile memory when used as main mem-
ory), MCDRAM (on KNL), GPUMemory (NVIDIA GPU memory shared over NVLink on POWER, over NVLink-
C2C on Grace Hopper, etc.), CXL-DRAM or CXL-NVM for CXL DRAM or non-volatile memory. Note that
some of these subtypes are guessed by the library, they might be missing or slightly wrong in some corner
cases. See Heterogeneous Memory for details, and HWLOC_MEMTIERS and HWLOC_MEMTIERS_GUESS in
Environment Variables for tuning these.

» Groups: subtype Cluster, Module, Tile, Compute Unit, Book or Drawer for different architecture-
specific groups of CPUs (see also What are these Group objects in my topology?).

+ OS devices (see also OS devices):

Co-processor: subtype OpenCL, LevelZero, CUDA, or VectorEngine.
GPU: subtype RSMI (AMD GPU) or NVML (NVIDIA GPU).

OpenFabrics: subtype BXTI (Bull/Atos BXI HCA).

Network: subtype S1ingshot (HPE Cray Slingshot Cassini HSN).

Block: subtype Disk, NVM (non-volatile memory), SPM (specific-purpose memory), CXLMem (CXL volatile
ou persistent memory), Tape, or Removable Media Device.

» L3 Caches: subtype MemorySideCache when hwloc is configured to expose the KNL MCDRAM in Cache
mode as a L3.

» PCl devices: subtype NVSwitch for NVLink switches (see also NVLinkBandwidth in Distances).
» Misc devices: subtype MemoryModule (see also Misc objects added by hwloc)

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr_u of type-specific attribute
structures. For instance, a L2Cache object ob j contains cache-specific information in ob j—>attr->cache, such
as its size and associativity, cache type. See hwloc_obj_attr_u for details.

Generated by Doxygen

38 Obiject attributes

10.2 Custom string infos

Aside of these generic attribute fields, hwloc annotates many objects with info attributes made of name and value strings.
Each object contains a list of such pairs that may be consulted manually (looking at the object infos array field) or
using the hwloc_obj_get_info_by name(). The user may additionally add new name-value pairs to any object using
hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc. Note that these attributes heavily
depend on the ability of the operating system to report them. Many of them will therefore be missing on some OS.

10.2.1 Hardware Platform Information
These info attributes are attached to the root object (Machine).
PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

SystemVersionRegister, ProcessorVersionRegister (Machine) Some POWER/PowerPC-specific attributes de-
scribing the platform and processor. Currently only available on Linux. Usually added to Package objects, but
can be in Machine instead if hwloc failed to discover any package.

DMIBoardVendor, DMIBoardName, etc. DMI hardware information such as the motherboard and chassis models and
vendors, the BIOS revision, etc., as reported by Linux under /sys/class/dmi/id/.

SoCO0ID, SoCOFamily, SoC1Revision, etc. The ID, family and revision of the first system-on-chip (SoCO0), second
(SoC1), etc.

MemoryMode, ClusterMode Intel Xeon Phi processor configuration modes. Available if hwloc-dump-hwdata was
used (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?) or if hwloc managed to
guess them from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used as a cache) or Hybrid25 (25%
of MCDRAM as cache). The cluster mode may be Quadrant, Hemisphere, All2All, SNC2 or SNC4. See
doc/examples/get-knl-modes.c in the source directory for an example of retrieving these attributes.

10.2.2 Operating System Information

These info attributes are attached to the root object (Machine).

OSName, OSRelease, OSVersion, HostName, Architecture The operating system name, release, version, the host-
name and the architecture name, as reported by the Unix uname command.

LinuxCgroup The name the Linux control group where the calling process is placed.

WindowsBuildEnvironment Either MinGW or Cygwin when one of these environments was used during build.

10.2.3 hwloc Information

Unless specified, these info attributes are attached to the root object (Machine).

Backend (topology root, or specific object added by that backend) The name of the hwloc backend/component
that filled the topology. If several components were combined, multiple Backend pairs may exist, with different
values, for instance x86 and Linux in the root object and CUDA in CUDA OS device objects.

MemoryTiersNr The number of different memory tiers in the topology, if any. See Heterogeneous Memory.
SyntheticDescription The description string that was given to hwloc to build this synthetic topology.

hwlocVersion The version number of the hwloc library that was used to generate the topology. If the topology was
loaded from XML, this is not the hwloc version that loaded it, but rather the first hwloc instance that exported the
topology to XML earlier.

Generated by Doxygen

10.2 Custom string infos 39

ProcessName The name of the process that contains the hwloc library that was used to generate the topology. If the
topology was from XML, this is not the hwloc process that loaded it, but rather the first process that exported the
topology to XML earlier.

10.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if package locality information is
missing.

CPUModel The processor model name.

CPUVendor, CPUModelNumber, CPUFamilyNumber, CPUStepping The processor vendor name, model number,
family number, and stepping number. Currently available for x86 and Xeon Phi processors on most systems, and
for ia64 processors on Linux (except CPUStepping).

CPUFamily The family of the CPU, currently only available on Linux on LoongArch platforms.
CPURevision A POWER/PowerPC-specific general processor revision number, currently only available on Linux.

CPUType A Solaris-specific general processor type name, such as "i86pc".

10.2.5 OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

Vendor, Model, Revision, Size, SectorSize (Block OS devices) The vendor and model names, revision, size (in KiB
= 1024 bytes) and SectorSize (in bytes).

LinuxDevicelD (Block OS devices) The major/minor device number such as 8:0 of Linux device.
SerialNumber (Block and CXL Memory OS devices) The serial number of the device.

CXLRAMSize, CXLPMEMSize (CXL Memory Block OS devices) The size of the volatile (RAM) or persistent
(PMEM) memory in a CXL Type-3 device. Sizes are in KiB (1024 bytes).

GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and model names of the GPU device.
OpenCLDeviceType, OpenCLPlatformindex,

OpenCLPlatformName, OpenCLPlatformDevicelndex (OpenCL OS devices) The type of OpenCL device, the
OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize (OpenCL OS devices) The number of compute units and
global memory size of an OpenCL device. Sizes are in KiB (1024 bytes).

LevelZeroVendor, LevelZeroModel, LevelZeroBrand,

LevelZeroSerialNumber, LevelZeroBoardNumber (LevelZero OS devices) The name of the vendor, device model,
brand of a Level Zero device, and its serial and board numbers.

LevelZeroDriverindex, LevelZeroDriverDevicelndex (LevelZero OS devices) The index of the Level Zero driver
within the list of drivers, and the index of the device within the list of devices managed by this driver.

LevelZeroUUID (LevelZero OS devices or subdevices) The UUID of the device or subdevice.
LevelZeroSubdevices (LevelZero OS devices) The number of subdevices below this OS device.
LevelZeroSubdevicelD (LevelZero OS subdevices) The index of this subdevice within its parent.

LevelZeroDeviceType (LevelZero OS devices or subdevices) A string describing the type of device, for instance
"GPU", "CPU", "FPGA", etc.

Generated by Doxygen

40 Obiject attributes

LevelZeroNumSlices, LevelZeroNumSubslicesPerSlice,

LevelZeroNumEUsPerSubslice, LevelZeroNumThreadsPerEU (LevelZero OS devices or subdevices) The num-
ber of slices in the device, of subslices per slice, of execution units (EU) per subslice, and of threads per EU.

LevelZeroHBMSize, LevelZeroDDRSize, LevelZeroMemorySize (LevelZero OS devices or subdevices) The
amount of HBM or DDR memory of a LevelZero device or subdevice. Sizes are in KiB (1024 bytes). If the
type of memory could not be determined, the generic name LevelZeroMemorySize is used. For devices that
contain subdevices, the amount reported in the root device includes the memories of all its subdevices.

LevelZeroCQGroups, LevelZeroCQGroup2 (LevelZero OS devices or subdevices) The number of completion
queue groups, and the description of the third group (as Nx0xX where N is the number of queues in the
group, and 0xX is the hexadecimal bitmask of ze_command_queue_group_property_flag_t listing
properties of those queues).

AMDUUID, AMDSerial (RSMI GPU OS devices) The UUID and serial number of AMD GPUs.

RSMIVRAMSize, RSMIVisibleVRAMSize, RSMIGTTSize (RSMI GPU OS devices) The amount of GPU memory
(VRAM), of GPU memory that is visible from the host (Visible VRAM), and of system memory that is usable by
the GPU (Graphics Translation Table). Sizes are in KiB (1024 bytes).

XGMiHivelD (RSMI GPU OS devices) The ID of the group of GPUs (Hive) interconnected by XGMI links

XGMIPeers (RSMI GPU OS devices) The list of RSMI OS devices that are directly connected to the current device
through XGMI links. They are given as a space-separated list of object names, for instance rsmi2 rsmi3.

NVIDIAUUID, NVIDIASerial (NVML GPU OS devices) The UUID and serial number of NVIDIA GPUs.
CUDAMultiProcessors, CUDACoresPerMP,

CUDAGIobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices) The num-
ber of shared multiprocessors, the number of cores per multiprocessor, the global memory size, the (global) L2
cache size, and size of the shared memory in each multiprocessor of a CUDA device. Sizes are in KiB (1024
bytes).

VectorEngineModel, VectorEngineSerialNumber (VectorEngine OS devices) The model and serial number of a
VectorEngine device.

VectorEngineCores, VectorEngineMemorySize, VectorEngineLLCSize,

VectorEngineL2Size, VectorEngineL1dSize, VectorEngineL1iSize (VectorEngine OS devices) The number of
cores, memory size, and the sizes of the (global) last level cache and of L2, L1d and L1i caches of a Vector«—
Engine device. Sizes are in KiB (1024 bytes).

VectorEngineNUMAPartitioned (VectorEngine OS devices) If this attribute exists, the VectorEngine device is con-
figured in partitioned mode with multiple NUMA nodes.

Address, Port (Network interface OS devices) The MAC address and the port number of a software network inter-
face, such as eth4 on Linux.

NodeGUID, SysimageGUID, Port1State, Port2LID, Port2LMC, Port3GID1 (OpenFabrics OS devices) The node
GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID mask count of port #2, and
GID #1 of port #3.

BXIUUID (OpenFabrics BXI OS devices) The UUID of an Atos/Bull BXI HCA.

Generated by Doxygen

10.2 Custom string infos 4

10.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

MemoryTier (NUMA Nodes) The rank of the memory tier of this node. Ranks start from 0 for highest bandwidth
nodes. The attribute is only set if multiple tiers are found. See Heterogeneous Memory.

CXLDevice (NUMA Nodes or DAX Memory OS devices) The PCI/CXL bus ID of a device whose CXL Type-3 mem-
ory is exposed here. If multiple devices are interleaved, their bus IDs are separated by commas, and the number
of devices in reported in CXLDevicelnterleaveWays.

CXLDevicelnterleaveWays (NUMA Nodes or DAX Memory OS devices) If multiple CXL devices are interleaved,
this attribute shows the number of devices (and the number of bus IDs in the CXLDevice attributes).

DAXDevice (NUMA Nodes) The name of the Linux DAX device that was used to expose a non-volatile memory region
as a volatile NUMA node.

DAXType (NUMA Nodes or DAX OS devices) The type of memory exposed in a Linux DAX device or in the corre-
sponding NUMA node, either "NVM" (non-volatile memory) or "SPM" (specific-purpose memory).

DAXParent (NUMA Nodes or DAX OS devices) A string describing the Linux sysfs hierarchy that exposes the DAX
device, for instance containing "nmem1" for specific-purpose memory or "ndbus0" for NVDIMMs.

PCIBusID (GPUMemory NUMA Nodes) The PCI bus ID of the GPU whose memory is exposed in this NUMA node.

Inclusive (Caches) The inclusiveness of a cache (1 if inclusive, 0 otherwise). Currently only available on x86 proces-
sors.

SolarisProcessorGroup (Group) The Solaris kstat processor group name that was used to build this Group object.
PCIVendor, PCIDevice (PCI devices and bridges) The vendor and device names of the PCI device.

PCISlot (PCl devices or Bridges) The name/number of the physical slot where the device is plugged. If the physical
device contains PCI bridges above the actual PCI device, the attribute may be attached to the highest bridge (i.e.
the first object that actually appears below the physical slot).

Vendor, AssetTag, PartNumber, DeviceLocation, BankLocation, FormFactor, Type, Size, Rank (MemoryModule Misc objects)
Information about memory modules (DIMMs) extracted from SMBIOS. Size is in KiB.

10.2.7 User-Given Information

Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

IstopoStyle Enforces the style of an object (background and text colors) in the graphical output of Istopo. See CUS-
TOM COLORS in the Istopo(1) manpage for detalils.

Generated by Doxygen

42

Obiject attributes

Generated by Doxygen

Chapter 11

Topology Attributes: Distances, Memory
Attributes and CPU Kinds

Besides the hierarchy of objects and individual object attributes (see Object attributes), hwloc may also expose finer
information about the hardware organization.

11.1 Distances

A machine with 4 CPUs may have identical links between every pairs of CPUs, or those CPUs could also only be
connected through a ring. In the ring case, accessing the memory of nearby CPUs is slower than local memory, but it is
also faster than accessing the memory of CPU on the opposite side of the ring. These deep details cannot be exposed
in the hwloc hierarchy, that is why hwloc also exposes distances.

Distances are matrices of values between sets of objects, usually latencies or bandwidths. By default, hwloc tries to get
a matrix of relative latencies between NUMA nodes when exposed by the hardware.

In the aforementioned ring case, the matrix could report 10 for latency between a NUMA node and itself, 20 for nearby
nodes, and 30 for nodes that are opposites on the ring. Those are theoretical values exposed by hardware vendors
(in the System Locality Distance Information Table (SLIT) in the ACPI) rather than physical latencies. They are mostly
meant for comparing node relative distances.

Distances structures currently created by hwloc are:

NUMALatency (Linux, Solaris, FreeBSD) This is the matrix of theoretical latencies described above.

XGMiBandwidth (RSMI) This is the matrix of unidirectional XGMI bandwidths between AMD GPUs (in MB/s). It con-
tains 0 when there is no direct XGMI link between objects. Values on the diagonal are artificially set to very high
so that local access always appears faster than remote access.

GPUs are identified by RSMI OS devices such as "rsmi0". They may be converted into the corresponding OpenCL
or PCl devices using hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something more
convenient, for instance by replacing bandwidths with numbers of links between peers.

XGMIHops (RSMI) This matrix lists the number of XGMI hops between AMD GPUs. It reports 1 when there is a direct
link between two distinct GPUs. [f there is no XGMI route between them, the value is 0. The number of hops
between a GPU and itself (on the diagonal) is 0 as well.

XeLinkBandwidth (LevelZero) This is the matrix of unidirectional XeLink bandwidths between Intel GPUs (in MB/s).
It contains 0 when there is no direct XeLink between objects. When there are multiple links, their bandwidth is
aggregated.

Values on the diagonal are artificially set to very high so that local access always appears faster than remote
access. This includes bandwidths between a (sub)device and itself, between a subdevice and its parent device,
or between two subdevices of the same parent.

Generated by Doxygen

44 Topology Attributes: Distances, Memory Attributes and CPU Kinds

The matrix interconnects all LevelZero devices and subdevices (if any), even if some of them may have no link at
all.

The bandwidths of links between subdevices are accumulated in the bandwidth between their parents.

NVLinkBandwidth (NVML) This is the matrix of unidirectional NVLink bandwidths between NVIDIA GPUs (in MB/s).
It contains 0 when there is no direct NVLink between objects. When there are multiple links, their bandwidth is
aggregated. Values on the diagonal are artificially set to very high so that local access always appears faster than
remote access.

On POWER platforms, NVLinks may also connects GPUs to CPUs. On NVIDIA platforms such as DGX-2, a
NVSwitch may interconnect GPUs through NVLinks. In these cases, the distances structure is heterogeneous.
GPUs always appear first in the matrix (as NVML OS devices such as "nvml0"), and non-GPU objects may appear
at the end (Package for POWER processors, PCI device for NVSwitch).

NVML OS devices may be converted into the corresponding CUDA, OpenCL or PCI devices using
hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something more
convenient, for instance by removing switches or CPU ports, or by replacing bandwidths with numbers of links
between peers.

When a NVSwitch interconnects GPUs, only links between one GPU and different NVSwitch ports are reported.
They may be merged into a single switch port with hwloc_distances_transform() or hwloc-annotate. Or a transitive
closure may also be applied to report the bandwidth between GPUs across the NVSwitch.

Users may also specify their own matrices between any set of objects, even if these objects are of different types (e.g.
bandwidths between GPUs and CPUs).

The entire API is located in hwloc/distances.h. See also Retrieve distances between objects, as well as
Helpers for consulting distance matrices and Add distances between objects.

11.2 Memory Attributes

Machines with heterogeneous memory, for instance high-bandwidth memory (HBM), normal memory (DDR), and/or
high-capacity slow memory (such as non-volatile memory DIMMs, NVDIMMSs) require applications to allocate buffers in
the appropriate target memory depending on performance and capacity needs. Those target nodes may be exposed in
the hwloc hierarchy as different memory children but there is a need for performance information to select the appropriate
one.

hwloc memory attributes are designed to expose memory information such as latency, bandwidth, etc. Users may also
specify their own attributes and values.

The memory attributes APl is located in hwloc/memattrs.h, see Comparing memory node attributes for finding where to allocate on

and Managing memory attributes for details. See also an example in doc/examples/memory-attributes.c in the source
tree.

Memory attributes are the low-level solution to selecting target memory. hwloc uses them internally to build Memory
Tiers which provide an easy way to distinguish NUMA nodes of different kinds, as explained in Heterogeneous Memory.

11.3 CPU Kinds

Hybrid CPUs may contain different kinds of cores. The CPU kinds API in hwloc/cpukinds.h provides a way to list the
sets of PUs in each kind and get some optional information about their hardware characteristics and efficiency.

If the operating system provides efficiency information (e.g. Windows 10, MacOS X / Darwin and some Linux kernels),
it is used to rank hwloc CPU kinds by efficiency. Otherwise, hwloc implements several heuristics based on frequencies
and core types (see HWLOC_CPUKINDS_RANKING in Environment Variables).

The ranking shows energy-efficient CPUs first, and high-performance power-hungry cores last.

These CPU kinds may be annotated with the following native attributes:

FrequencyMaxMHz (Linux) The maximal operating frequency of the core, as reported by cpufreq drivers on Linux.

Generated by Doxygen

11.3 CPU Kinds 45

FrequencyBaseMHz (Linux) The base/nominal operating frequency of the core, as reported by some cpufreq or
ACPI drivers on Linux (e.g. cpufreq_cppc or intel_pstate).

CoreType (x86) A string describing the kind of core, currently IntelAtom, IntelCore or IntelLowPower, as
reported by the x86 CPUID instruction and Linux PMU on some Intel processors.

LinuxCapacity (Linux) The Linux-specific CPU capacity found in sysfs, as reported by the Linux kernel on some
recent platforms. Higher values usually mean that the Linux scheduler considers the core as high-performance
rather than energy-efficient.

LinuxCPUType (Linux) The Linux-specific CPU type found in sysfs, such as intel_atom_0, as reported by future
Linux kernels on some Intel processors.

DarwinCompatible (Darwin / Mac OS X) The compatibility attribute of the CPUs as found in the 10 reg-
istry on Darwin / Mac OS X. For instance apple, icestorm;ARM, v8 for energy-efficient cores and
apple, firestorm; ARM, v8 on performance cores on Apple M1 CPU.

The hwloc-calc tool may be used to query the number of cpukinds or which ones exist in some cores:
$ hwloc-calc -N cpukind all
2

$ hwloc-calc -I cpukind package:0
0,1

See Kinds of CPU cores for details.

Generated by Doxygen

46

Topology Attributes: Distances, Memory Attributes and CPU Kinds

Generated by Doxygen

Chapter 12

Heterogeneous Memory

Heterogeneous memory hardware exposes different NUMA nodes for different memory technologies. On the image
below, a dual-socket server has both HBM (high bandwidth memory) and usual DRAM connected to each socket, as
well as some CXL memory connected to the entire machine.

Machine [3120MiBE total)

CEL-DRAM L34 (1024MiB)

Package L#0 Package L#1
DRAM L#0 (1024MiB) | | HEM L#1 (1024MiB) DRAM L#2 (1024MiB) | | HEM L#3 (1024MiB)
Core L#0 | | Core L#1 | | Core L#2 | | Core L3 Core L#4 | | Core L#5 | | Core L#6 | | Core L#7

The hardware usually exposes "default"” memory first because it is where "normal" data buffers should be allocated by
default.

However there is no guarantee about whether HBM, NVM, CXL will appear second. Hence there is a need to explicit
memory technologies and performance to help users decide where to allocate.

12.1 Memory Tiers and Default nodes

hwloc builds Memory Tiers to identify different kinds of NUMA nodes. On the above machine, the first tier would contain
both HBM NUMA nodes (L#1 and L#3), while the second tier would contain both DRAM nodes (L#0 and L#2), and the
CXL memory (L#4) would be in the third tier. NUMA nodes are then annotated accordingly:

« Each node object has its subtype field set to HBM, DRAM or CXL-DRAM (see other possible values in
Normal attributes).

» Each node also has a string info attribute with name MemoryTier and value 0 for the first tier, 1 for the second,
etc.

Tiers are built using two kinds of information:
« First hwloc looks into operating system information to find out whether a node is non-volatile, CXL, special-
purpose, etc.

» Then it combines that knowledge with performance metrics exposed by the hardware to guess what's actually
DRAM, HBM, etc. These metrics are also exposed in hwloc Memory Attributes, for instance bandwidth and la-
tency, for read and write. See Memory Attributes and Comparing memory node attributes for finding where to allocate on
for more details.

Generated by Doxygen

48 Heterogeneous Memory

Once nodes with similar or different characteristics are identified, they are placed in tiers. Tiers are then sorted by
bandwidth so that the highest bandwidth is ranked first, etc.
If hwloc fails to build tiers properly, see HWRLOC_MEMT IERS and HWLOC_MEMTIERS_GUESS in Environment Variables.

hwloc also tries to identify "default” memory nodes. They usually correspond the tier containing DRAM nodes. These
are where normal data buffers should be allocated from, but they may also be used when placing tasks per NUMA
domain (to hide NUMA nodes with overlapping localities, e.g. HBM and CXL in our example above).

12.2 Using Heterogeneous Memory from the command-line

Specific kinds or tiers of memory may be specified in location filters when using NUMA nodes in hwloc command-line
tools. For instance, binding memory on the first HBM node (numa [hbm] : 0) is actually equivalent to binding on the
second node (numa : 1) on our example platform:

$ hwloc-bind —--membind ’numa[hbm]:0’ —-- myprogram
$ hwloc-bind --membind ’‘numa:1’ -- myprogram

To count DRAM nodes in the first CPU package, or all nodes:

$ hwloc-calc -N ’'numal[dram]’ package:0
1

$ hwloc-calc -N 'numa’ package:0

2

To list all default NUMA nodes:

$ hwloc-calc --default-nodes all
0,2

To list all the physical indexes of Tier-0 NUMA nodes (HBM P#2 and P#3 not shown on the figure):

$ hwloc-calc -I ’'numaltier=0]’ -p all
2,3

To find the memory kind of a NUMA node, one may look at its info attribute or use hwloc-calc:

$ hwloc-info --get-attr "info MemoryTier" numa:1l
1

$ hwloc-calc -I memorytier numa:l

1

The number of tiers may be retrieved by looking at topology attributes in the root object, of by counting tiers inside it:

$ hwloc-info --get-attr "info MemoryTiersNr" topology
2

$ hwloc-calc --N memorytier all

2

hwloc-calc and hwloc-bind also have options such as ——local-memory and ——best-memattr to select the best
NUMA node among the local ones. For instance, the following command-lines say that, among nodes near node:0
(DRAM L#0), the best one for latency is itself while the best one for bandwidth is node:1 (HBM L#1).

$ hwloc-calc —--best-memattr latency node:0

0

$ hwloc-calc --best-memattr bandwidth node:0
1

Generated by Doxygen

12.3 Using Heterogeneous Memory from the C API 49

12.3 Using Heterogeneous Memory from the C API

There are two major changes introduced by heterogeneous memory when looking at the hierarchical tree of objects.

« First, there may be multiple memory children attached at the same place. For instance, each Package in the
above image has two memory children, one for the DRAM NUMA node, and another one for the HBM node.

» Second, memory children may be attached at different levels. In the above image, CXL memory is attached to
the root Machine object instead of below a Package.

Hence, one may have to rethink the way it selects NUMA nodes.

12.3.1 lterating over the list of (heterogeneous) NUMA nodes

A common need consists in iterating over the list of NUMA nodes (e.g. using hwloc_get_next_obj_by_type()). This is
useful for counting some domains before partitioning a job, or for finding a node that is local to some objects. With
heterogeneous memory, one should remember that multiple nodes may now have the same locality (HBM and DRAM
above) or overlapping localities (e.g. DRAM and CXL above).

» Checking NUMA node subtype or tier attributes is a good way to avoid this issue by ignoring nodes of different
kinds.

» Another solution consists in ignoring nodes whose CPU set overlap the previously selected ones. For instance, in
the above example, one could first select DRAM L#0 but ignore HBM L#1 (because it overlaps with DRAM L#0),
then select DRAM L#2 but ignore HBM L#3 and CXL L#4 (overlap wih DRAM L#2).

hwloc set of default nodes (returned by hwloc_topology_get_default_nodeset()) was designed for this purpose: it
ignores NUMA nodes with overlapping CPU set (only the first one is kept), and also tries to return nodes with similar
subtypes.

It is also possible to iterate over the memory parents (e.g. Packages in our example) and select only one mem-
ory child for each of them. hwloc_get_memory_parents_depth() may be used to find the depth of these parents.
However this method only works if all memory parents are at the same level. It would fail in our example«
: the root Machine object also has a memory child (CXL), hence hwloc_get_memory_parents_depth() would returns
HWLOC_TYPE_DEPTH_MULTIPLE.

12.3.2 lterating over local (heterogeneous) NUMA nodes

Another common need is to find NUMA nodes that are local to some objects (e.g. a Core). A basic solution consists in
looking at the Core nodeset and iterating over NUMA nodes to select those whose nodeset are included. A nicer solution
is to walk up the tree to find ancestors with a memory child. With heterogeneous memory, multiple such ancestors may
exist (Package and Machine in our example) and they may have multiple memory children.

Both these methods may be replaced with hwloc_get_local_numanode_objs() which provides a convenient and flexible
way to retrieve local NUMA nodes. One may then iterate over the returned array to select the appropriate one(s)
depending on their subtype, tier or performance attributes.

hwloc_memattr_get_best_target() is also a convenient way to select the best local NUMA node according to perfor-
mance metrics. See also Comparing memory node attributes for finding where to allocate on.

Generated by Doxygen

50

Heterogeneous Memory

Generated by Doxygen

Chapter 13

Importing and exporting topologies from/to
XML files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for loading
topologies faster (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process),
manipulating other nodes' topology, or avoiding the need for privileged processes (see Does hwloc require privileged access?).
Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with
hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set xml() and hwloc_topology_set xmlibuffer().

The HWLOC_XMLFILE environment variable also tells hwloc to load the topology from the given XML file (see
Environment Variables).

Note

Loading XML topologies disables binding because the loaded topology may not correspond to the physical ma-
chine that loads it. This behavior may be reverted by asserting that loaded file really matches the underlying sys-
tem with the HWLOC_THISSYSTEM environment variable or the HWLOC_TOPOLOGY_FLAG_ IS _THISSYSTEM
topology flag.

The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES may be used to load
a XML topology that contains the entire machine and restrict it to the part that is actually available to the current
process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources).

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported topology can
be reloaded on any other machine without requiring to change the locale.

XML exports contain all details about the platform. It means that two very similar nodes still have different XML
exports (e.g. some serial numbers or MAC addresses are different). If a less precise exporting/importing is
required, one may want to look at Synthetic topologies instead.

13.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance when
those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend is enabled by
default if libxml2 development headers are available (the relevant development package is usually 1ibxml2-devel
or libxml2-dev).

If libxml2 is not available at configure time, or if ——disable-1ibxml2 is passed, hwloc falls back to a custom
backend. Contrary to the aforementioned full XML backend with libxml2, this minimalistic XML backend cannot be
guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc release

Generated by Doxygen

52 Importing and exporting topologies from/to XML files

(even if using the libxml2 backend). Its advantage is, however, to always be available without requiring any external
dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxmI2 support may be built as
a dynamicall-loaded plugin. One should pass ——enable-plugins to enable plugin support (when supported) and
build as plugins all component that support it. Or pass ——enable-plugins=xml_1libxml to only build this libxmi2
support as a plugin.

13.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax, non-hwloc-valid XML contents, or
incompatibilities between hwloc releases (see Are XML topology files compatible between hwloc releases?).

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology_set_xml()

or hwloc_topology_set_xmlbuffer() is called). Some errors such non-hwloc-valid contents can only be detected later

when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology_set_xmil() (or hwloc_topology_set_xmlbuffer())
and hwloc_topology_load() to handle all these errors.

Generated by Doxygen

Chapter 14

Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware available. Aside
from loading XML topologies, hwloc also enables the building of synthetic topologies that are described by a single
string listing the arity of each levels.
For instance, Istopo may create a topology made of 2 packages, containing a single NUMA node and a L2 cache above
two single-threaded cores:
$ lstopo —-i "pack:2 node:1l 12:1 core:2 pu:l" -
Machine (2048MB)
Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#l
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with £ile.xml in this command line will export this topology to XML as usual.
Note

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine. It is a lot less
precise than XML but may still be enough when only the hierarchy of resources matters.

14.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each object of the
previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, 12u, 111, pu, group (hwloc_obj_type_«
sscanf() is used for parsing the type names). They do not need to be written case-sensitively, nor entirely (as long as
there is no ambiguity, 2 characters such as ma select a Machine level). Note that /O and Misc objects are not available.
Instead of specifying the type of each level, it is possible to just specify the arities and let hwloc choose all types
according to usual topologies. The following examples are therefore equivalent:

$ lstopo -i "2 3 4 5 6"
$ lstopo —-i "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

NUMA nodes are handled in a special way since they are not part of the main CPU hierarchy but rather attached below
it as memory children. Thus, NUMANode : 3 actually means Group : 3 where one NUMA node is attached below each
group. These groups are merged back into the parent when possible (typically when a single NUMA node is requested
below each parent).

It is also possible the explicitly attach NUMA nodes to specific levels. For instance, a topology similar to a Intel Xeon Phi
processor (with 2 NUMA nodes per 16-core group) may be created with:

Generated by Doxygen

54 Synthetic topologies

$ lstopo —1i "package:1l group:4 [numa] [numa] core:16 pu:4"

The root object does not appear in the synthetic description string since it is always a Machine object. Therefore the
Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

* L2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may be specified
in bytes (without any unit suffix) or as kB, KiB, MB, MiB, etc.

* NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be specified in bytes
(without any unit suffix) or as GB, GiB, TB, TiB, etc.

* PU:2 (indexes=0,2,1, 3) specifies 2 PU children and the full list of OS indexes among the entire set of 4
PU objects.

* PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by NUMA node first
and then by package.

« Attributes in parentheses at the very beginning of the description apply to the root object.

hwloc command-line tools may modify a synthetic topology, for instance to customize object attributes, or
to remove some objects to make the topology heterogeneous or asymmetric. See many examples in
How do | create a custom heterogeneous and asymmetric topology?.

14.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by passing the synthetic description string to
hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthet ic component. This component may be enabled by force by setting
the HWLOC_SYNTHETIC environment variable to something such as node:2 core:3 pu:4.

Loading a synthetic topology disables binding support since the topology usually does not match the underlying hard-
ware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the environment or by setting the
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

14.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a convenient way
to quickly describe the contents of a machine. The Istopo tool may also perform such an export by forcing the output
format.

$ lstopo —-of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 LldCache:1 LliCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology (see also Are synthetic strings compatible betweel
The entire tree will be similar, but some attributes such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the symmetric_subtree field of

the root object is set. Also memory children should be attached in a symmetric way (e.g. the same number of memory

children below each Package object, etc.). However, I/O devices and Misc objects are ignored when looking at symmetry

and exporting the string.

Generated by Doxygen

Chapter 15

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable libraries
that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting between
those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core therefore
generally does not explicitly depend on these types of libraries. However, when a custom application uses or otherwise
depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc interface with
dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the local
machine. If so, the helper requires the input topology to match the current machine. Some helpers also require 1/O
device discovery to be supported and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the
Linux system, such as binding threads through their thread ID ("tid") or parsing kernel CPU mask files. See
Linux-specific helpers.

Windows specific features hwloc/windows.h offers Windows-specific helpers to query information about Windows
processor groups. See Windows-specific helpers.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and libnuma-specific
types, such as bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets. See
Interoperability with Linux libnuma bitmask and Interoperability with Linux libnuma unsigned long masks.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc with
functions such as sched_getaffinity() or pthread_attr_setaffinity_np(). See Interoperability with glibc sched affinity.

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs interface. For exam-
ple, it can return a list of processors near an OpenFabrics device. It may also return the corresponding OS device
hwloc object for further information (if I/O device discovery is enabled). See Interoperability with OpenFabrics.

OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD and NVIDIA implementa-
tions currently offer locality information. It may return the list of processors near a GPU givenasa cl_device+«
_id. It may also return the corresponding OS device hwloc object for further information (if /O device discovery
is enabled). See Interoperability with OpenCL.

oneAPI Level Zero hwloc/levelzero.h enables interoperability with the oneAPI Level Zero interface. It may return the
list of processors near an accelerator or GPU. It may also return the corresponding OS device hwloc object for
further information (if /0 device discovery is enabled). See Interoperability with the oneAPI Level Zero interface..

AMD ROCm SMI Library (RSMI) hwloc/rsmi.h enables interoperability with the AMD ROCm SMI interface. It may re-
turn the list of processors near an AMD GPU. It may also return the corresponding OS device hwloc object for fur-
ther information (if I/O device discovery is enabled). See Interoperability with the ROCm SMI Management Library.

Generated by Doxygen

56 Interoperability With Other Software

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime in-
terfaces. For instance, it may return the list of processors near NVIDIA GPUs. It may also return the
corresponding OS device hwloc object for further information (if 1/O device discovery is enabled). See
Interoperability with the CUDA Driver API and Interoperability with the CUDA Runtime API.

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability with the NVIDIA NVML interface. |t
may return the list of processors near a NVIDIA GPU given as a nvmlDevice_t. It may also return
the corresponding OS device hwloc object for further information (if I/O device discovery is enabled). See
Interoperability with the NVIDIA Management Library.

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL X extension
(NVCtrl library). If I/O device discovery is enabled, it may return the OS device hwloc object that corre-
sponds to a display given as a name such as :0.0 or given as a port/device pair (server/screen). See
Interoperability with OpenGL displays.

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It manipulates CPU
set strings in a format that is slightly different from hwloc's one (it does not divide the string in fixed-size subsets
and separates them with commas). To ease interoperability, hwloc offers routines to convert hwloc CPU sets
from/to taskset-specific string format. See for instance hwloc_bitmap_taskset_snprintf() in The bitmap API.

Most hwloc command-line tools also support the option ——cpuset-output-format taskset to manipu-
late taskset-specific strings.

Generated by Doxygen

Chapter 16

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a
hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate on
and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that modify
the same instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread is reading
or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance concurrently.
When running in multiprocessor environments, be aware that proper thread synchronization and/or memory coherency
protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another (e.g., a
mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth mentioning.
For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init (), hwloc_topology_load(), hwloc_topology_destroy ()

(see Topology Creation and Destruction) imply major modifications of the structure, including freeing some ob-
jects. No other thread cannot access the topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object (),hwloc_topology_alloc_group_obje

and hwloc_topology_insert_group_object () (see Modifying a loaded Topology) may modify the
topology significantly by adding objects inside the tree, changing the topology depth, etc.

hwloc_distances_add_commit () andhwloc_distances_remove () (see Add distances between objects)

modify the list of distance structures in the topology, and the former may even insert new Group objects.

hwloc_memattr_register () andhwloc_memattr_set_value () (see Managing memory attributes)
modify the memory attributes of the topology.

hwloc_topology_restrict () modifies the topology even more dramatically by removing some objects.

hwloc_topology_refresh () updates some internal cached structures. (see below).

Although references to former objects may still be valid after insertion or restriction, it is strongly advised to not

rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.
Consulting distances hwloc_distances_get () and its variants are thread-safe except if the topology was re-

cently modified (because distances may involve objects that were removed).

Whenever the topology is modified (see above), hwloc_topology_refresh () should be calledin the same
thread-safe context to force the refresh of internal distances structures. A call to hwloc_distances_get ()
may also refresh distances-related structures.

Once this refresh has been performed, multiple hwloc_distances_get () may then be performed concur-
rently by multiple threads.

Consulting memory attributes Functions consulting memory attributes in hwloc/memattrs.h are thread-safe except if
the topology was recently modified (because memory attributes may involve objects that were removed).

Generated by Doxygen

58

Thread Safety

Whenever the topology is modified (see above), hwloc_topology_refresh () should be called
in the same thread-safe context to force the refresh of internal memory attribute structures. A call to
hwloc_memattr_get_value () or hwloc_memattr_get_targets () may also refresh internal
structures for a given memory attribute.

Once this refresh has been performed, multiple functions consulting memory attributes may then be performed
concurrently by multiple threads.

Locating topologies hwloc_topology_set_x* (see Topology Detection Configuration and Query) do not modify

the topology directly, but they do modify internal structures describing the behavior of the upcoming invocation of
hwloc_topology_load (). Hence, all of these functions should not be used concurrently.

Generated by Doxygen

Chapter 17

Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology configura-
tion, some components will be used (once enabled, they create a backend), some will be ignored.

The usual default is to enable the native operating system component, (e.9. 1inux or solaris) and the pci one.
If available, an architecture-specific component (such as x86) may also improve the topology detection. Finally, some
hardware-specific components (such as cuda or rsmi) may add information about GPUs, accelerators, etc.

If a XML topology is loaded, the xm1 discovery component will be used instead of all other components.

17.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not conflict
with the previously enabled ones. This includes native operating system components, architecture-specific ones, and if
available, /0 components such as pci.

Usually the native operating system component (when it exists, e.g. 1inux or aix) is enabled first. Then hwloc looks
for an architecture specific component (e.g. x86). Finally there also exist a basic component (no_os) that just tries to
discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native OS compo-
nents, do nothing unless the topology is still empty. Some others, such as x86 and pci, can complete and annotate
what other backends found earlier. Discovery is performed by phases: CPUs are first discovered, then memory is
attached, then PCI, etc.

Default priorities ensure that clever components are invoked first. Native operating system components have higher
priorities, and are therefore invoked first, because they likely offer very detailed topology information. If needed, it will
be later extended by architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set_xml() is used before loading the topology, the corresponding
component is enabled first. Then, as usual, hwloc enables any other component (based on priorities) that does not
conflict.

Certain components that manage a virtual topology, for instance XML topology import or synthetic topology description,
conflict with all other components. Therefore, they may only be loaded (e.g. with hwloc_topology_set_xml ())
if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about available
components (including their priority) and enabling as backends.

17.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_synthetic () have been called, com-
ponents may be selected with environment variables such as HWLOC_XMLFILE, HWLOC_SYNTHETIC, HWLOC_+«
FSROOT, or HWLOC_CPUID_PATH (see Environment Variables).

Finally, the environment variable HWLOC_COMPONENTS resets the list of selected components. If the variable is set
and empty (or set to a single comma separating nothing, since some operating systems do not accept empty variables),

Generated by Doxygen

60 Components and plugins

the normal component priority order is used.

If the variable is set to x8 6 in this variable will cause the x8 6 component to take precedence over any other component,
including the native operating system component. It is therefore loaded first, before hwloc tries to load all remaining
non-conflicting components. In this case, x86 would take care of discovering everything it supports, instead of only
completing what the native OS information. This may be useful if the native component is buggy on some platforms.

It is possible to prevent some components from being loaded by prefixing their name with — in the list. For instance
%86, —pci will load the x8 6 component, then let hwloc load all the usual components except pci. A single component
phase may also be blacklisted, for instance with —1inux:io.

It is possible to prevent all remaining components from being loaded by placing st op in the environment variable. Only
the components listed before this keyword will be enabled.

hwloc_topology_set_components() may also be used inside the program to prevent the loading of a specific component
(or phases) for the target topology.

17.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend on their depen-
dencies (for instance the 1ibpciaccess library). Plugin support may be enabled with the ——enable-plugins
configure option. All components buildable as plugins will then be built as plugins. The configure option may be given a
comma-separated list of component names to specify the exact list of components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $1ibdir/hwloc. All plugins found in
this directory are loaded during topology_init () (unless blacklisted in HWLOC_PLUGINS_BLACKLIST, see
Environment Variables). A specific list of directories (colon-separated) to scan may be specified in the HWLOC_ «+
PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core. Components
are then only enabled (as a backend) if the topology configuration requests it, as explained in the previous sections.
Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see
Embedding hwloc in Other Software for details.

17.4 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available components may be listed at
running with the HWLOC_COMPONENTS_VERBOSE environment variable (see Environment Variables).

linux The official component for discovering CPU, memory and I/O devices on Linux. It discovers PCIl devices without
the help of external libraries such as libpciaccess, but requires the pci component for adding vendor/device names
to PCI objects. It also discovers many kinds of Linux-specific OS devices.

aix, darwin, freebsd, hpux, netbsd, solaris, windows Each officially supported operating system has its own native
component, which is statically built when supported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the previously-
found CPU information. It is statically built when supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled by default
when ——host=powerpc64-bgg-1linux is passed to configure (see How do | build hwloc for BlueGene/Q?).

no_os A basic component that just tries to detect the number of processing units in the system. It mostly serves on
operating systems that are not natively supported. It is always statically built.

pci PCI object discovery uses the external libpciaccess library; see I/O Devices. It may also annotate existing PCI
devices with vendor and device names. It may be built as a plugin.

opencl The OpenCL component creates co-processor OS device objects such as opencl0do (first device of the first
OpenCL platform) or opencl1d3 (fourth device of the second platform). Only the AMD and NVIDIA OpenCL
implementations currently offer locality information. It may be built as a plugin.

Generated by Doxygen

17.4 Existing components and plugins 61

rsmi This component creates GPU OS device objects such as rsmi0 for describing AMD GPUs. It may be built as a
plugin.

levelzero This component creates co-processor OS device objects such as zeO for describing oneAPI Level Zero
devices. It may also create sub-OS-devices such as ze0.0 inside those devices. It may be built as a plugin.

cuda This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA GPUs used
with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as nvml0 that are useful for batch
schedulers. It also detects the actual PCle link bandwidth without depending on power management state and
without requiring administrator privileges. It may be built as a plugin.

gl Probing the NV-CONTROL X extension (NVCitrl library) creates OS device objects such as :0.0 corresponding to
NVIDIA displays. They are useful for graphical applications that need to place computation and/or data near a
rendering GPU. It may be built as a plugin.

synthetic Synthetic topology support (see Synthetic topologies) is always built statically.

xml XML topology import (see Importing and exporting topologies from/to XML files) is always built stati-
cally. It internally uses a specific class of components for the actual XML import/export routines (see
libxml2 and minimalistic XML backends for details).

« xml_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.
« xml_libxml relies on the external libxmlI2 library for provinding a feature-complete XML import/export. It
may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated by Doxygen

62

Components and plugins

Generated by Doxygen

Chapter 18

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that users
don't have to separately download and install it before installing your software. This can be advantageous to ensure that
your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc pre-installed.
When used in "embedded" mode, hwloc will:

* not install any header files
* not build any documentation files
+ not build or install any executables or tests

e not build 1ibhwloc.* — instead, it will build 1ibhwloc_embedded. *

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

shell$./configure --enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your
software. If you do this, you can directly integrate hwloc's m4 configure macro into your configure script. You can then
invoke hwloc's configuration tests and build setup by calling a m4 macro (see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project will have to
manually setup dlopen or libltdl in its build system so that hwloc can load its plugins at run time. Also, embedders should
be aware of complications that can arise due to public and private linker namespaces (e.g., if the embedder project is
loaded into a private namespace and then hwloc tries to dynamically load its plugins, such loading may fail since the
hwloc plugins can't find the hwloc symbols they need). The embedder project is strongly advised not to use hwloc's
dynamically loading plugins / dlopen / libltdl capability.

18.1 Using hwloc's M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is one example
of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc's embedded m4
capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake 1.11.1, and Libtool
2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain to
not work.

You can either copy all the config/hwlocxm4 files from the hwloc source tree to the directory where your project's m4
files reside, or you can tell aclocal to find more m4 files in the embedded hwloc's "config" subdirectory (e.g., add "-«
Ipath/to/embedded/hwloc/config" to your Makefile.am's ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be invoked if
using the m4 macros):

Generated by Doxygen

64

Embedding hwloc in Other Software

+ HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not): In-

voke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to use
for AC_OUTPUT files — it's where the hwloc tree is located relative to $top_srcdir. Hence, if your embedded
hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as the first argument.
If HWLOC_SETUP_CORE and the rest of configure completes successfully, then "make" traversals of the
hwloc tree with standard Automake targets (all, clean, install, etc.) should behave as expected. For example, it is
safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am. The last argument, if not empty, will
cause the macro to display an announcement banner that it is starting the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_+«
EMBEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags
are filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as rele-
vant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_embedded)
itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTSs it) to
contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your build process
to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_SETUP«
_CORE.

HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded" mode
(described above). If HWLOC_BUILD_STANDALONE is invoked xbeforex HWLOC_SETUP_CORE, the embed-
ded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc_embedded.la).

HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc's types and public symbols with
"foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an upper-case
translation if the prefix supplied; HWLOC_OBJ_CORE becomes FOO_hwloc_OBJ_CORE. This is recommended
behavior if you are including hwloc in middleware — it is possible that your software will be combined with other
software that links to another copy of hwloc. If both uses of hwloc utilize different symbol prefixes, there will be
no type/symbol clashes, and everything will compile, link, and run successfully. If you both embed hwloc without
changing the symbol prefix and also link against an external hwloc, you may get multiple symbol definitions when
linking your final library or application.

HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only ap-
ply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked unless HWLOC_BUILD_«
STANDALONE has already been invoked).

HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with Au-
tomake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWLOC_«
DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected to be built).
This macro is necessary because hwloc uses some AM_CONDITIONALSs to build itself, and AM_CONDITIONALs
cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLOC_DO_AM_CONDITIONALS
even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using Automake to build hwloc, this
macro is unnecessary (and will actually cause errors because it invoked AM_x macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_CANONICAL«
_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS macros early in the
configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf documentation for further
information.

Also note that hwloc's top-level configure.ac script uses exactly the macros described above to build hwloc in a stan-
dalone mode (by default). You may want to examine it for one example of how these macros are used.

18.2 Example Embedding hwloc

Here's an example of integrating with a larger project named sandbox that already uses Autoconf, Automake, and Libtool
to build itself:

Generated by Doxygen

18.2 Example Embedding hwloc 65

First, cd into the sandbox project source tree
shell$ cd sandbox
shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am
1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS
2. Add "my-embedded-hwloc" to SUBDIRS
3. Add "$ (HWLOC_EMBEDDED_LDADD)" and "$ (HWLOC_EMBEDDED_LIBS)" to
sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter
is any dependent support libraries that may be needed by
$ (HWLOC_EMBEDDED_LDADD) .
4. Add "$ (HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$ (HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX (sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE ([my—-embedded-hwloc],
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>

2. Add calls to sandbox_hwloc_init () and other hwloc API functions

[happy=yes], [happy=nol)" line

Now you can bootstrap, configure, build, and run the sandbox as normal — all calls to "sandbox_hwloc_x" will use the
embedded hwloc rather than any system-provided copy of hwloc.

Generated by Doxygen

66

Embedding hwloc in Other Software

Generated by Doxygen

Chapter 19

Frequently Asked Questions (FAQ)

19.1 Concepts

19.1.1 | only need binding, or the number of cores, why should | use hwloc ?

hwloc is its portable API that works on a variety of operating systems. It supports binding of threads, processes and
memory buffers (see CPU binding and Memory binding). Even if some features are not supported on some systems,
using hwloc is much easier than reimplementing your own portability layer.

Moreover, hwloc provides knowledge of cores and hardware threads. It offers easy ways to bind tasks to individual hard-
ware threads, or to entire multithreaded cores, etc. See How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc?.
Most alternative software for binding do not even know whether each core is single-threaded, multithreaded or hyper-
threaded. They would bind to individual threads without any way to know whether multiple tasks are in the same
physical core.

However, using hwloc comes with an overhead since a topology must be loaded before gathering information and
binding tasks or memory. Fortunately this overhead may be significantly reduced by filtering non-interesting information
out of the topology, see What may | disable to make hwloc faster? below.

19.1.2 What may | disable to make hwloc faster?

Building a hwloc topology on a large machine may be slow because the discovery of hundreds of hardware cores
or threads takes time (especially when reading thousands of sysfs files on Linux). Ignoring some objects (for in-
stance caches) that aren't useful to the current application may improve this overhead. One should also consider
using XML (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process) to work
around such issues.

Contrary to Istopo which enables most features (see Why is Istopo slow?), the default hwloc configuration is to keep all
objects enabled except 1/Os and instruction caches. This usually builds a very precise view of the CPU and memory
subsystems, which may be reduced if some information is unneeded.

The following code tells hwloc to build a much smaller topology that only contains Cores (explicitly filtered-in below),
hardware threads (PUs, cannot be filtered-out), NUMA nodes (cannot be filtered-out), and the root object (usually a
Machine; the root cannot be removed without breaking the tree):

hwloc_topology_t topology;

hwloc_topology_init (&topology) ;

/+ filter everything out =/

hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_NONE) ;

/+ filter Cores back in */

hwloc_topology_set_type_filter (topology, HWLOC_OBJ_CORE, HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);

However, one should remember that filtering such objects out removes locality information from the hwloc tree. For
instance, we may not know anymore which PU is close to which NUMA node. This would be useful to applica-
tions that explicitly want to place specific memory buffers close to specific tasks. To ignore useless objects but keep

Generated by Doxygen

68 Frequently Asked Questions (FAQ)

those that bring locality/hierarchy information, applications may replace HWLOC_TYPE_FILTER_KEEP_NONE with
HWLOC_TYPE_FILTER_KEEP_STRUCTURE above.

Starting with hwloc 2.8, it is also possible to ignore distances between objects, memory performance attributes, and
kinds of CPU cores, by setting topology flags before load:

[...]
/* disable distances, memory attributes and CPU kinds =/
hwloc_topology_set_flags (topology, HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

| HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

| HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS) ;
[...]
hwloc_topology_load(topology);

Finally it is possible to prevent some hwloc components from being loaded and queried. If you are sure that the Linux
(or x86) component is enough to discover everything you need, you may ask hwloc to disable all other components by
setting something like HWLOC_COMPONENTS=11inux, stop in the environment. See Components and plugins for
details.

19.1.3 Should | use logical or physical/OS indexes? and how?

One of the original reasons why hwloc was created is that physical/OS indexes (obj->o0s_1index) are often crazy
and unpredictable: processors numbers are usually non-contiguous (processors 0 and 1 are not physically close), they
vary from one machine to another, and may even change after a BIOS or system update. These numbers make task
placement hardly portable. Moreover some objects have no physical/OS numbers (caches), and some objects have
non-unique numbers (core numbers are only unique within a socket). Physical/OS indexes are only guaranteed to exist
and be unique for PU and NUMA nodes.

hwloc therefore introduces logical indexes (obj—->1ogical_index) which are portable, contiguous and logically
ordered (based on the resource organization in the locality tree). In general, one should only use logical indexes and
just let hwloc do the internal conversion when really needed (when talking to the OS and hardware).

hwloc developers recommends that users do not use physical/OS indexes unless they really know what they are doing.
The main reason for still using physical/OS indexes is when interacting with non-hwloc tools such as numactl or taskset,
or when reading hardware information from raw sources such as /proc/cpuinfo.

Istopo options —1 and —p may be used to switch between logical indexes (prefixed with L#) and physical/OS indexes
(P#). Converting one into the other may also be achieved with hwloc-calc which may manipulate either logical or physical
indexes as input or output. See also hwloc-calc.

Convert PU with physical number 3 into logical number
$ hwloc-calc -I pu --physical-input --logical-output pu:3

w

Convert a set of NUMA nodes from logical to physical

(beware that the output order may not match the input order)

$ hwloc-calc -I numa —--logical-input —--physical-output numa:2-3 numa:7
0,2,5

19.1.4 hwiloc is only a structural model, it ignores performance models, memory
bandwidth, etc.?

hwloc is indeed designed to provide applications with a structural model of the platform. This is an orthogonal approach
to describing the machine with performance models, for instance using memory bandwidth or latencies measured by
benchmarks. We believe that both approaches are important for helping application make the most of the hardware.
For instance, on a dual-processor host with four cores each, hwloc clearly shows which four cores are together. Laten-
cies between all pairs of cores of the same processor are likely identical, and also likely lower than the latency between
cores of different processors. However, the structural model cannot guarantee such implementation details. On the
other side, performance models would reveal such details without always clearly identifying which cores are in the same
processor.

Generated by Doxygen

19.1 Concepts 69

The focus of hwloc is mainly of the structural modeling side. However, hwloc lets user adds performance informa-
tion to the topology through distances (see Distances), memory attributes (see Memory Attributes) or even custom
annotations (see How do | annotate the topology with private notes?). hwloc may also use such distance information
for grouping objects together (see hwloc only has a one-dimensional view of the architecture, it ignores distances? and
What are these Group objects in my topology?).

19.1.5 hwloc only has a one-dimensional view of the architecture, it ignores distances?

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the same
object (siblings) are assumed to be equally interconnected (same distance between any of them), while the distance
between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual
physical distances between objects. The hwloc topology may therefore be annotated with distance information that may
be used to build a more realistic representation (multi-dimensional) of each level. For instance, there can be a distance
matrix that representing the latencies between any pair of NUMA nodes if the BIOS and/or operating system reports
them.

For more information about the hwloc distances, see Distances.

19.1.6 What are these Group objects in my topology?

hwloc comes with a set of predefined object types (Core, Package, NUMA node, Caches) that match the vast majority
of hardware platforms. The HWLOC_OBJ_GROUP type was designed for cases where this set is not sufficient. Groups
may be used anywhere to add more structure information to the topology, for instance to show that 2 out of 4 NUMA
nodes are actually closer than the others. When applicable, the subtype field describes why a Group was actually
added (see also Normal attributes).

hwloc currently uses Groups for the following reasons:

* NUMA parents when memory locality does not match any existing object.
+ 1/O parents when 1/O locality does not match any existing object.
» Distance-based groups made of close objects.

* AMD Core Complex (CCX) (subtype is Complex, in the x86 backend), but these objects are usually merged
with the L3 caches or Dies.

» AMD Bulldozer dual-core compute units (subtype is ComputeUnit, in the x86 backend), but these objects
are usually merged with the L2 caches.

« Intel Extended Topology Enumeration levels such as Module and Tile (in the x86 and Windows backends).

+ Windows processor groups when HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=1 is set in the environ-
ment (except if they contain exactly a single NUMA node, or a single Package, etc.).

+ IBM S/390 "Books" on Linux (subtype is Book).

+ Linux Clusters of CPUs (subtype is Cluster), for instance for ARM cores sharing of some internal cache or
bus, or x86 cores sharing a L2 cache (since Linux kernel 5.16). HWLOC_DONT_MERGE_CLUSTER_GROUPS=1
may be set in the environment to disable the automerging of these groups with identical caches, etc.

+ AlIX unknown hierarchy levels.

hwloc Groups are only kept if no other object has the same locality information. It means that a Group containing a
single child is merged into that child. And a Group is merged into its parent if it is its only child. For instance a Windows
processor group containing a single NUMA node would be merged with that NUMA node since it already contains the
relevant hierarchy information.

When inserting a custom Group with hwloc_hwloc_topology_insert_group_object(), this merging may be disabled by
setting its dont_merge attribute.

Generated by Doxygen

70 Frequently Asked Questions (FAQ)

19.1.7 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there could be
different types of processors in a single machine, each with different numbers of cores, symmetric multithreading, or
levels of caches.

In practice, asymmetric topologies are rare but occur for at least two reasons:

* Intermediate groups may added for I/O affinity: on a 4-package machine, an 1/O bus may be connected to 2
packages. These packages are below an additional Group object, while the other packages are not (see also
What are these Group objects in my topology?).

« If only part of a node is available to the current process, for instance because the resource manager uses Linux
Cgroups to restrict process resources, some cores (or NUMA nodes) will disappear from the topology (unless flag
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was passed). On a 32-core machine where 12 cores
were allocated to the process, this may lead to one CPU package with 8 cores, another one with only 4 cores,
and two missing packages.

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects.
All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through
the cousin pointers of the hwloc_obj structure. Object attribute (cache depth and type, group depth) are also taken in
account when gathering objects as horizontal levels. To be clear: there will be one level for L1i caches, another level for
L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a group is missing above some processors), a given horizontal level will still exist
if there exist any objects of that type. However, some branches of the overall tree may not have an object located in
that horizontal level. Note that this specific hole within one horizontal level does not imply anything for other levels. All
objects of the same type are gathered in horizontal levels even if their parents or children have different depths and
types.

See the diagram in Terms and Definitions for a graphical representation of such topologies.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore,
different depths). These children are therefore siblings (because they have the same parent), but they are not
cousins (because they do not belong to the same horizontal level).

19.1.8 What happens to my topology if | disable symmetric multithreading,
hyper-threading, etc. in the system?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multithreading,
for instance Hyper-Threading, each Core object may contain multiple PU objects:

$ lstopo -

Core L#0
PU L#0 (P#0)
PU L#1 (P#2)
Core L#l
PU L#2 (P#1)
PU L#3 (P#3)

x86 machines usually offer the ability to disable hyper-threading in the BIOS. Or it can be disabled on the Linux kernel
command-line at boot time, or later by writing in sysfs virtual files.

If you do so, the hwloc topology structure does not significantly change, but some PU objects will not appear anymore.
No level will disappear, you will see the same number of Core objects, but each of them will contain a single PU now.
The PU level does not disappear either (remember that hwloc topologies always contain a PU level at the bottom of the
topology) even if there is a single PU object per Core parent.

$ lstopo -

Core L#0

PU L#0 (P#0)
Core L#1

PU L#1 (P#1)

Generated by Doxygen

19.2 Advanced 4

19.1.9 How may | ighore symmetric multithreading, hyper-threading, etc. in hwloc?

First, see What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the system? for
more information about multithreading.
If you need to ignore symmetric multithreading in software, you should likely manipulate hwloc Core objects directly:

/* get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_CORE) ;

/* get the third core below the first package «*/

hwloc_obj_t package, core;

package = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PACKAGE, O0);

core = hwloc_get_obj_inside_cpuset_by_type (topology, package->cpuset,
HWLOC_OBJ_CORE, 2);

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is
actually bound to a single thread within this core (to avoid useless migrations).

/+ bind on the second core */

hwloc_obj_t core = hwloc_get_obj_by_type (topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup (core->cpuset) ;
hwloc_bitmap_singlify (set);

hwloc_set_cpubind (topology, set, 0);

hwloc_bitmap_free (set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each core
by asking for their first PU object:

$ hwloc-calc core:4-7
0x0000££00

$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask
hwloc-bind to singlify the cpuset before binding

$ hwloc-bind core:3.pu:0 —-- echo "hello from first thread on core #3"
hello from first thread on core #3

$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3

19.2 Advanced

19.2.1 1do not want hwloc to rediscover my enormous machine topology every time | rerun
a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when
multiple processes repeat the discovery on large machines (for instance when starting one process per core in a parallel
application). The machine topology usually does not vary much, except if some cores are stopped/restarted or if the
administrator restrictions are modified. Thus rediscovering the whole topology again and again may look useless.

For this purpose, hwloc offers XML import/export and shared memory features.

XML lets you save the discovered topology to a file (for instance with the Istopo program) and reload it later by setting
the HWLOC_XMLFILE environment variable. The HWLOC_THISSYSTEM environment variable should also be set to
1 to assert that loaded file is really the underlying system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the operating
system. It is also possible to manipulate such XML files with the C programming interface, and the import/export may
also be directed to memory buffer (that may for instance be transmitted between applications through a package). See
also Importing and exporting topologies from/to XML files.

Generated by Doxygen

72 Frequently Asked Questions (FAQ)

Note

The environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES may be used to load a XML topol-
ogy that contains the entire machine and restrict it to the part that is actually available to the current process (e.g.
when Linux Cgroup/Cpuset are used to restrict the set of resources). See Environment Variables.

Shared-memory topologies consist in one process exposing its topology in a shared-memory buffer so that other pro-
cesses (running on the same machine) may use it directly. This has the advantage of reducing the memory footprint
since a single topology is stored in physical memory for multiple processes. However, it requires all processes to map
this shared-memory buffer at the same virtual address, which may be difficult in some cases. This API is described in
Sharing topologies between processes.

19.2.2 How many topologies may | use in my program?

hwloc lets you manipulate multiple topologies at the same time. However, these topologies consume memory and

system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged to open the same

topology multiple times.

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses are read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to avoid memory waste when manipule

19.2.3 How to avoid memory waste when manipulating multiple similar topologies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory, for instance
the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or unapply them, or
export/import to/from XML. However, this feature is limited to basic differences such as attribute changes. It does not
support complex modifications such as adding or removing some objects.

19.2.4 How do | annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private pointers. This field
is only valid during the lifetime of these container object and topology. It becomes invalid as soon the topology is
destroyed, or as soon as the object disappears, for instance when restricting the topology. The userdata field is not
exported/imported to/from XML by default since hwloc does not know what it contains. This behavior may be changed by
specifying application-specific callbacks with hwloc_topology_set_userdata_export_callback () and
hwloc_topology_set_userdata_import_callback().

Each object may also contain some info attributes (name and value strings) that are setup by hwloc during discovery
and that may be extended by the user with hwloc_obj_add_info () (see also Object attributes). Contrary to the
userdata field which is unique, multiple info attributes may exist for each object, even with the same name. These
attributes are always exported to XML. However, only character strings may be used as names and values.

It is also possible to insert Misc objects with a custom name anywhere as a leaf of the topology (see
Miscellaneous objects). And Misc objects may have their own userdata and info attributes just like any other ob-
ject.

The hwloc-annotate command-line tool may be used for adding Misc objects and info attributes.

There is also a topology-specific userdata pointer that can be used to recognize different topologies by storing a custom
pointer. It may be manipulated with hwloc_topology_set_userdata () andhwloc_topology_get_userdata ().

19.2.5 How do | create a custom heterogeneous and asymmetric topology?

Synthetic topologies (see Synthetic topologies) allow to create custom topologies but they are always symmetric:
same numbers of cores in each package, same local NUMA nodes, same shared cache, etc. To create an asymmet-
ric topology, for instance to simulate hybrid CPUs, one may want to start from a larger symmetric topology and restrict it.

Assuming we want two packages, one with 4 dual-threaded cores, and one with 8 single-threaded cores, first we create
a topology with two identical packages, each with 8 dual-threaded cores:

Generated by Doxygen

19.2 Advanced 73

$ lstopo —1i "pack:2 core:8 pu:2" topo.xml

Then create the bitmask representing the PUs that we wish to keep and pass it to Istopo's restrict option:
$ hwloc-calc -i topo.xml pack:0.core:0-3.pu:0-1 pack:1l.core:0-7.pu:0
0x555500ff

$ lstopo -i topo.xml —-restrict 0x555500ff topo2.xml
$ mv -f topo2.xml topo.xml

To mark the cores of first package as Big (power hungry) and those of second package as Little (energy efficient), define
CPU kinds:

$ hwloc-annotate topo.xml topo.xml -- none —-- cpukind $(hwloc-calc -i topo.xml pack:0) 1 0 CoreType Big
$ hwloc-annotate topo.xml topo.xml —-- none —- cpukind $(hwloc-calc -i topo.xml pack:1l) 0 0 CoreType Little

A similar method may be used for heterogeneous memory. First we specify 2 NUMA nodes per package in our synthetic
description:

$ lstopo -1 "pack:2 [numa (memory=100GB)] [numa (memory=10GB)] core:8 pu:2" topo.xml

Then remove the second node of first package:

$ hwloc-calc -i topo.xml --nodeset node:all ~pack:0.node:1l
0x0000000e
$ lstopo -1 topo.xml —--restrict nodeset=0xe topo2.xml

S mv -f topo2.xml topo.xml
Then make one large node even bigger:

$ hwloc-annotate topo.xml topo.xml -- pack:0.numa:0 -- size 200GB

Now we have 200GB in first package, and 100GB+10GB in second package.

Next we may specify that the small NUMA node (second of second package) is HBM while the large ones are DRAM:

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 pack:1l.numa:0 —-- subtype DRAM
$ hwloc-annotate topo.xml topo.xml —-- pack:l.numa:1 —-- subtype HBM

Finally we may define memory performance attributes to specify that the HBM bandwidth (200GB/s) from local cores is
higher than the DRAM bandwidth (50GB/s):

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 —-- memattr Bandwidth pack:0 50000
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:0 -- memattr Bandwidth pack:1 50000
$ hwloc-annotate topo.xml topo.xml —-- pack:l.numa:1l —-- memattr Bandwidth pack:1 200000

There is currently no way to create or modify I/O devices attached to such fake topologies. There is also no way to have
some patrtial levels, e.g. a L3 cache in one package but not in the other.

More changes may obviously be performed by manually modifying the XML export file. Simple operations such as
modifying object attributes (cache size, memory size, name-value info attributes, etc.), moving 1/0O subtrees, moving
Misc objects, or removing objects are easy to perform.

However, modifying CPU and Memory objects requires care since cpusets and nodesets are supposed to remain con-
sistent between parents and children. Similarly, PCI bus IDs should remain consistent between bridges and children
within an I/O subtree.

Generated by Doxygen

74 Frequently Asked Questions (FAQ)

19.3 Caveats

19.3.1 Why is Istopo slow?

Istopo enables most hwloc objects and discovery flags by default so that the output topology is as precise as possible
(while hwloc disables many of them by default). This includes I/O device discovery through PCI libraries as well as
external libraries such as NVML. To speed up Istopo, you may disable such features with command-line options such as
--no-io.

When NVIDIA GPU probing is enabled (e.g. with CUDA or NVML), one may enable the Persistent mode (with
nvidia-smi -pm 1) to avoid significant GPU wakeup and initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious round-trips on
the network may significantly increase the discovery time. Forcing the DISPLAY environment variable to the remote X
server display (usually : 0) instead of only setting the COMPUTE variable may avoid this.

Also remember that these hwloc components may be disabled. At build-time, one may pass configure
flags such as —--disable-opencl, --disable-cuda, --disable-nvml, --disable-rsmi, and
——disable-levelzero. Atruntime, one may set the environment variable HWLOC_COMPONENTS=-opencl, —cuda, —-nvml, —:
or call hwloc_topology_set_components().

Remember that these backends are disabled by default, except in Istopo. If hwloc itself is still too slow even after
disabling all the I/O devices as explained above, see also What may | disable to make hwloc faster? for disabling even
more features.

19.3.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access to
the operation system. For instance memory module discovery on Linux is reserved to root, and the entire PCI discovery
on Solaris and BSDs requires access to some special files that are usually restricted to root (/dev/pcix or /devices/pcix).
To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator (with
the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML files). It will
offer all discovery information to any application without requiring any privileged access anymore. Only the necessary
hardware characteristics will be exported, no sensitive information will be disclosed through this XML export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is usually
much faster than querying the operating system again.

The utility hwloc-dump-hwdata is also involved in gathering privileged information at boot time and making it avail-
able to non-privileged users (note that this may require a specific SELinux MLS policy module). However, it only applies
to Intel Xeon Phi processors for now (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?).
See also HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.3.3 What should | do when hwloc reports "operating system’ warnings?

When the operating system reports invalid locality information (because of either software or hardware bugs), hwloc
may fail to insert some objects in the topology because they cannot fit in the already built tree of resources. If so, hwloc
will report a warning like the following. The object causing this error is ignored, the discovery continues but the resulting
topology will miss some objects and may be asymmetric (see also What happens if my topology is asymmetric?).

AR EEEE SRS S S S EEE SRS EEEEREREEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEE SRS TS E

hwloc received invalid information from the operating system.

L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!
Error occurred in topology.c line 940

Please report this error message to the hwloc user’s mailing list,
along with the files generated by the hwloc-gather-topology script.

hwloc will now ignore this invalid topology information and continue.

*
*
*
*
*
*
*
*
*
B R R R R S

These errors are common on large AMD platforms because of BIOS and/or Linux kernel bugs causing invalid L3 cache
information. In the above example, the hardware reports a L3 cache that is shared by 2 cores in the first NUMA node

Generated by Doxygen

19.4 Platform-specific 75

and 4 cores in the second NUMA node. That's wrong, it should actually be shared by all 6 cores in a single NUMA node.
The resulting topology will miss some L3 caches.

If your application does not care about cache sharing, or if you do not plan to request cache-aware binding in your pro-
cess launcher, you may likely ignore this error (and hide it by setting HWLOC_HIDE_ERRORS=1 in your environment).
Some platforms report similar warnings about conflicting Packages and NUMANodes.

On x86 hosts, passing HWLOC_COMPONENTS=x86 in the environment may workaround some of these issues by
switching to a different way to discover the topology.

Upgrading the BIOS and/or the operating system may help. Otherwise, as explained in the message, reporting this issue
to the hwloc developers (by sending the tarball that is generated by the hwloc-gather-topology script on this platform) is
a good way to make sure that this is a software (operating system) or hardware bug (BIOS, etc).

See also Questions and Bugs. Opening an issue on GitHub automatically displays hints on what information you should
provide when reporting such bugs.

19.3.4 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc
and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However, some global variables in
hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it so
that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether it can
safely ask libxml2 to free it (the application may also be using libxml2 outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide them. You
should pass the following command-line option to Valgrind to use it:

—-—-suppressions=/path/to/hwloc-valgrind. supp

19.4 Platform-specific

19.4.1 How do | enable ROCm SMI and select which version to use?

hwloc enables ROCm SMI as soon as it finds its development headers and libraries on the system. This detection
consists in looking in /opt / rocm by default. If a ROCm version was specified with ——with-rocm-version=4.«
4.0 or in the ROCM_VERSION environment variable, then /opt/rocm-<version> is used instead. Finally, a
specific installation path may be specified with ——with-rocm=/path/to/rocm.

As usual, developer header and library paths may also be set through environment variables such as LIBRARY_PATH
and C_INCLUDE_PATH

To find out whether ROCm SMI was detected and enabled, look in Probe / display I/O devices at the end of the configure
script output. Passing ——enable—-rsmi will also cause configure to fail if RSMI could not be found and enabled in
hwloc.

19.4.2 How do | enable CUDA and select which CUDA version to use?

hwloc enables CUDA as soon as it finds CUDA development headers and libraries on the system. This detection may
be performed thanks to pkg-config but it requires hwloc to know which CUDA version to look for. This may be
done by passing ——with—-cuda-version=11.0 to the configure script. Otherwise hwloc will also look for the
CUDA_VERSION environment variable.

If pkg—config does not work, passing ——with-cuda=/path/to/cuda to the configure script is another way to
define the corresponding library and header paths. Finally, these paths may also be set through environment variables
such as LIBRARY_PATH and C_INCLUDE_PATH.

These paths, either detected by pkg-config or given manually, will also be used to detect NVML and OpenCL
libraries and enable their hwloc backends.

To find out whether CUDA was detected and enabled, look in Probe / display I/O devices at the end of the configure
script output. Passing ——enable-cuda will also cause configure to fail if CUDA could not be found and enabled in
hwloc.

Generated by Doxygen

76 Frequently Asked Questions (FAQ)

Note that ——with-cuda=/nonexisting may be used to disable all dependencies that are installed by CUDA, i.e.
the CUDA, NVML and NVIDIA OpenCL backends, since the given directory does not exist.

19.4.3 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor?

Intel Xeon Phi processors introduced a new memory architecture by possibly having two distinct local memories: some
normal memory (DDR) and some high-bandwidth on-package memory (MCDRAM). Processors can be configured in
various clustering modes to have up to 4 Clusters. Moreover, each Cluster (quarter, half or whole processor) of the
processor may have its own local parts of the DDR and of the MCDRAM. This memory and clustering configura-
tion may be probed by looking at MemoryMode and ClusterMode attributes, see Hardware Platform Information and
doc/examples/get-knl-modes.c in the source directory.

Starting with version 2.0, hwloc properly exposes this memory configuration. DDR and MCDRAM are attached as two
memory children of the same parent, DDR first, and MCDRAM second if any. Depending on the processor configuration,
that parent may be a Package, a Cache, or a Group object of type Cluster.

Hence cores may have one or two local NUMA nodes, listed by the core nodeset. An application may allocate local
memory from a core by using that nodeset. The operating system will actually allocate from the DDR when possible, or
fallback to the MCDRAM.

To allocate specifically on one of these memories, one should walk up the parent pointers until finding an object with
some memory children. Looking at these memory children will give the DDR first, then the MCDRAM if any. Their
nodeset may then be used for allocating or binding memory buffers.

One may also traverse the list of NUMA nodes until finding some whose cpuset matches the target core or PUs. The
MCDRAM NUMA nodes may be identified thanks to the subtype field which is set to MCDRAM.

Command-line tools such as hwloc-bind may bind memory on the MCDRAM by using the hbm keyword. For
instance, to bind on the first MCDRAM NUMA node:

$ hwloc-bind —--membind —--hbm numa:0 -- myprogram
$ hwloc-bind --membind numa:0 -- myprogram

19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?

Intel Xeon Phi processors may use the on-package memory (MCDRAM) as either memory or a memory-side cache (re-
ported as a L3 cache by hwloc by default, see HWLOC_KNL_MSCACHE_L3 in Environment Variables). There are also
several clustering modes that significantly affect the memory organization (see How do I find the local MCDRAM NUMA node on Intel Xeol
for more information about these modes). Details about these are currently only available to privileged users. Without
them, hwloc relies on a heuristic for guessing the modes.

The hwloc-dump-hwdata utility may be used to dump this privileged binary information into human-readable and world-
accessible files that the hwloc library will later load. The utility should usually run as root once during boot, in order to
update dumped information (stored under /var/run/hwloc by default) in case the MCDRAM or clustering configuration
changed between reboots.

When SELinux MLS policy is enabled, a specific hwloc policy module may be required so that all users get access
to the dumped files (in /var/run/hwloc by default). One may use hwloc policy files from the SELinux Reference Policy
at https://github.com/TresysTechnology/refpolicy-contrib (see also the documentation at
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted).
hwloc-dump-hwdata requires dmi-sysfs kernel module loaded.

The utility is currently unneeded on platforms without Intel Xeon Phi processors.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.4.5 How do | build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the login/frontend nodes and a custom CNK (Compute Node Kernel)
on the compute nodes.

To discover the topology of a login/frontend node, hwloc should be configured as usual, without any BlueGene/Q-specific
option.

However, one would likely rather discover the topology of the compute nodes where parallel jobs are actually running. If
so0, hwloc must be cross-compiled with the following configuration line:

Generated by Doxygen

https://github.com/TresysTechnology/refpolicy-contrib
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted

19.5 Compatibility between hwloc versions 77

./configure --host=powerpc64-bgg-linux —--disable-shared —--enable-static \
CPPFLAGS='-1I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

19.4.6 How do | build hwloc for Windows?

hwloc binary releases for Windows are available on the website download pages (as pre-built ZIPs for both 32bits
and 64bits x86 platforms). However hwloc also offers several ways to build on Windows:

» The usual Unix build steps (configure, make and make install) work on the MSYS2/MinGW environ-
ment on Windows (the official hwloc binary releases are built this way). Some environment variables and options
must be configured, see contrib/ci.inria.fr/job-3-mingw. sh in the hwloc repository for an exam-
ple (used for nightly testing).

+ hwloc also supports such Unix-like builds in Cygwin (environment for porting Unix code to Windows).
» Windows build is also possible with CMake (CMakeLists.txt available under contrib/windows-cmake/).

* hwloc also comes with an example of Microsoft Visual Studio solution (under contrib/windows/) that
may serve as a base for custom builds.

19.4.7 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component). This imple-
mentation requires CPU binding so as to query topology information from each individual processor. This means that
hwloc cannot find any useful topology information unless user-level process binding is allowed by the NetBSD kernel.
The security.models.extensions.user_set_cpu_affinity sysctl variable must be set to 1 to do so.
Otherwise, only the number of processors will be detected.

19.4.8 Why does binding fail on AIX?

The AIX operating system requires specific user capabilities for attaching processes to resource sets (CAP_NUMA_«
ATTACH). Otherwise functions such as hwloc_set_cpubind() fail (return -1 with errno set to EPERM).

This capability must also be inherited (through the additional CAP_PROPAGATE capability) if you plan to bind a process
before forking another process, for instance with hwloc-bind.

These capabilities may be given by the administrator with:

chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" <username>

19.5 Compatibility between hwloc versions

19.5.1 How do | handle API changes?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be prepared
to check at compile-time whether some features are available in the currently installed hwloc distribution.
For instance, to check whether the hwloc version is at least 2.0, you should use:

#include <hwloc.h>
#1f HWLOC_API_VERSION >= 0x00020000

fendif
To check for the API of release X.Y.Z at build time, you may compare HWLOC_API_VERSION with (X<<16) + (Y<<8) +Z.

For supporting older releases that do not have HWLOC_OBJ_NUMANODE and HWLOC_OBJ_PACKAGE yet, you may
use:

Generated by Doxygen

78 Frequently Asked Questions (FAQ)

#include <hwloc.h>

#if HWLOC_API_VERSION < 0x00010b00

#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
#endif

Once a program is built against a hwloc library, it may also dynamically link with compatible libraries from other hwloc
releases. The version of that runtime library may be queried with hwloc_get_api_version(). For instance, the following
code enables the topology flag HWLOC_TOPOLOGY_FLAG_NO_DISTANCES when compiling on hwloc 2.8 or later,
but it disables it at runtime if running on an older hwloc (otherwise hwloc_topology_set_flags() would fail).

unsigned long topology_flags = ...; /x wanted flags that were supported before 2.8 x/
#1f HWLOC_API_VERSION >= 0x20800
if (hwloc_get_api_version() >= 0x20800)
topology_flags |= HWLOC_TOPOLOGY_FLAG_NO_DISTANCES; /% wanted flags only supported in 2.8+ x/
#endif
hwloc_topology_set_flags (topology, topology_flags);

See also How do | handle ABI breaks? for using hwloc_get_api_version() for testing ABI compatibility.

19.5.2 What is the difference between API and library version numbers?

HWLOC_API_VERSION is the version of the API. It changes when functions are added, modified, etc. However it does
not necessarily change from one release to another. For instance, two releases of the same series (e.g. 2.0.3 and
2.0.4) usually have the same HWLOC_API_VERSION (0x00020000). However their HWLOC_VERSION strings are
different ("2.0.3" and "2.0. 4" respectively).

19.5.3 How do | handle ABI breaks?

The hwloc interface was deeply modified in release 2.0 to fix several issues of the 1.x interface (see
Upgrading to the hwloc 2.0 APl and the NEWS file in the source directory for details). The ABI was broken, which
means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library, check the major revision number
in the API version:

#include <hwloc.h>
unsigned version = hwloc_get_api_version();
if ((version >> 16) != (HWLOC_API_VERSION >> 16)) {
fprintf (stderr,
"$s compiled for hwloc API 0x%x but running on library API 0Ox%x.\n"
"You may need to point LD_LIBRARY_PATH to the right hwloc library.\n"
"Aborting since the new ABI is not backward compatible.\n",
callname, HWLOC_API_VERSION, version);
exit (EXIT_FAILURE);
}

To specifically detect v2.0 issues:

#include <hwloc.h>
#1f HWLOC_API_VERSION >= 0x00020000
/* headers are recent =/
if (hwloc_get_api_version() < 0x20000)
. error out, the hwloc runtime library is older than 2.0
#else
/* headers are pre-2.0 x/
if (hwloc_get_api_version() >= 0x20000)
. error out, the hwloc runtime library is more recent than 2.0
#endif

In theory, library sonames prevent linking with incompatible libraries. However custom hwloc installations or improperly
configured build environments may still lead to such issues. Hence running one of the above (cheap) checks before
initializing hwloc topology may be useful.

Generated by Doxygen

19.5 Compatibility between hwloc versions 79

19.5.4 Are XML topology files compatible between hwloc releases?

XML topology files are forward-compatible: a XML file may be loaded by a hwloc library that is more recent than the
hwloc release that exported that file.

However, hwloc XMLs are not always backward-compatible: Topologies exported by hwloc 2.x cannot be imported by
1.x by default (see XML changes for working around such issues). There are also some corner cases where backward
compatibility is not guaranteed because of changes between major releases (for instance 1.11 XMLs could not be
imported in 1.10).

XMLs are exchanged at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (cluster-wide) hwloc installation is a good
way to avoid such incompatibilities.

19.5.5 Are synthetic strings compatible between hwloc releases?

Synthetic strings (see Synthetic topologies) are forward-compatible: a synthetic string generated by a release may be
imported by future hwloc libraries.

However they are often not backward-compatible because new details may have been added to synthetic descriptions in
recent releases. Some flags may be given to hwloc_topology_export_synthetic() to avoid such details and stay backward
compatible.

19.5.6 Is it possible to share a shared-memory topology between different hwloc releases?

Shared-memory topologies (see Sharing topologies between processes) have strong requirements on compatibility be-
tween hwloc libraries. Adopting a shared-memory topology fails if it was exported by a non-compatible hwloc release.
Releases with same major revision are usually compatible (e.g. hwloc 2.0.4 may adopt a topology exported by 2.0.3)
but different major revisions may be incompatible (e.g. hwloc 2.1.0 cannot adopt from 2.0.x).

Topologies are shared at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (system-wide) hwloc installation is a good
way to avoid such incompatibilities.

Generated by Doxygen

80

Frequently Asked Questions (FAQ)

Generated by Doxygen

Chapter 20

Upgrading to the hwloc 2.0 API

See Compatibility between hwloc versions for detecting the hwloc version that you are compiling and/or running against.

20.1 New Organization of NUMA nodes and Memory

20.1.1 Memory children

In hwloc v1.x, NUMA nodes were inside the tree, for instance Packages contained 2 NUMA nodes which contained a
L3 and several cache.

Starting with hwloc v2.0, NUMA nodes are not in the main tree anymore. They are attached under objects as Memory
Children on the side of normal children. This memory children list starts at ob j—>memory_first_child and its
size is obj->memory_arity. Hence there can now exist two local NUMA nodes, for instance on Intel Xeon Phi
processors.

The normal list of children (starting at obj->first_child, ending at obj->last_child, of size
obj->arity, and available as the array obj—>children) now only contains CPU-side objects: PUs, Cores,
Packages, Caches, Groups, Machine and System. hwloc_get_next_child() may still be used to iterate over all children
of all lists.

Hence the CPU-side hierarchy is built using normal children, while memory is attached to that hierarchy depending on
its affinity.

20.1.2 Examples

* a UMA machine with 2 packages and a single NUMA node is now modeled as a "Machine" object with two
"Package” children and one "NUMANode" memory children (displayed first in Istopo below):

Machine (1024MB total)
NUMANode L#0 (P#0 1024MB)
Package L#0

Core L#0 + PU L#0 (P#0)

Core L#1 + PU L#1 (P#1)
Package L#1

Core L#2 + PU L#2 (P#2)

Core L#3 + PU L#3 (P#3)

» a machine with 2 packages with one NUMA node and 2 cores in each is now:

Machine (2048MB total)
Package L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Generated by Doxygen

82 Upgrading to the hwloc 2.0 API

« if there are two NUMA nodes per package, a Group object may be added to keep cores together with their local
NUMA node:

Machine (4096MB total)
Package L#0
GroupO L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
GroupO L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

« if the platform has L3 caches whose localities are identical to NUMA nodes, Groups aren't needed:

Machine (4096MB total)
Package L#0
L3 L#0 (1l6MB)
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
L3 L#1 (16MB)
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

20.1.3 NUMA level and depth

NUMA nodes are not in "main” tree of normal objects anymore. Hence, they don't have a meaningful depth anymore (like
I/O and Misc objects). They have a virtual (negative) depth (HWLOC_TYPE_DEPTH_NUMANODE) so that functions
manipulating depths and level still work, and so that we can still iterate over the level of NUMA nodes just like for any
other level.

For instance we can still use lines such as

int depth = hwloc_get_type_depth (topology, HWLOC_OBJ_NUMANODE) ;
hwloc_obj_t obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, 4);
hwloc_obj_t node = hwloc_get_next_obj_by_depth (topology, HWLOC_TYPE_DEPTH_NUMANODE, prev);

The NUMA depth should not be compared with others. An unmodified code that still compares NUMA and Package
depths (to find out whether Packages contain NUMA or the contrary) would now always assume Packages contain
NUMA (because the NUMA depth is negative).

However, the depth of the Normal parents of NUMA nodes may be used instead. In the last example above, NUMA
nodes are attached to L3 caches, hence one may compare the depth of Packages and L3 to find out that NUMA nodes
are contained in Packages. This depth of parents may be retrieved with hwloc_get_memory_parents_depth(). However,
this function may return HWLOC_TYPE_DEPTH_MULTIPLE on future platforms if NUMA nodes are attached to different
levels.

20.1.4 Finding Local NUMA nodes and looking at Children and Parents

Applications that walked up/down to find NUMANode parent/children must now be updated. Instead of looking directly
for a NUMA node, one should now look for an object that has some memory children. NUMA node(s) will be attached
there. For instance, when looking for a NUMA node above a given core core:

hwloc_obj_t parent = core->parent;
while (parent && !parent->memory_arity)
parent = parent->parent; /* no memory child, walk up */
if (parent)
/* use parent->memory_first_child (and its siblings if there are multiple local NUMA nodes) =/

Generated by Doxygen

20.2 4 Kinds of Objects and Children 83

The list of local NUMA nodes (usually a single one) is also described by the nodeset attribute of each object (which
contains the physical indexes of these nodes). lterating over the NUMA level is also an easy way to find local NUMA
nodes:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, HWLOC_OBJ_NUMANODE, tmp)) != NULL) {
if (hwloc_bitmap_isset (obj->nodeset, tmp->os_index))
/* tmp is a NUMA node local to obj, use it */
}

Similarly finding objects that are close to a given NUMA nodes should be updated too. Instead of looking at the NUMA
node parents/children, one should now find a Normal parent above that NUMA node, and then look at its parents/children
as usual:

hwloc_obj_t tmp = obj->parent;

while (hwloc_obj_type_is_memory (tmp))
tmp = tmp—->parent;

/* now use tmp instead of obj x/

To avoid such hwloc v2.x-specific and NUMA-specific cases in the code, a generic lookup for any kind of object,
including NUMA nodes, might also be implemented by iterating over a level. For instance finding an object of type
type which either contains or is included in object ob7j can be performed by traversing the level of that type and
comparing CPU sets:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, type, tmp)) != NULL) {
if (hwloc_bitmap_intersects (tmp->cpuset, obj->cpuset))
/* tmp matches, use it x/

}

This generic lookup works whenever type or ob3j are Normal or Memory objects since both have CPU sets.
Moreover, it is compatible with the hwloc v1.x API.

20.2 4 Kinds of Objects and Children

20.2.1 1/0 and Misc children

I/0 children are not in the main object children list anymore either. They are in the list starting at obj->io_first+«
_childandits sizeis obj—>io_arity.

Misc children are not in the main object children list anymore. They are in the list starting at ob j—>misc_first_«
childandits sizeis obj—->misc_arity.

See hwloc_obj for details about children lists.

hwloc_get_next_child() may still be used to iterate over all children of all lists.

20.2.2 Kinds of objects
Given the above, objects may now be of 4 kinds:
« Normal (everything not listed below, including Machine, Package, Core, PU, CPU Caches, etc);
* Memory (currently NUMA nodes or Memory-side Caches), attached to parents as Memory children;
« 1/O (Bridges, PCI and OS devices), attached to parents as I/O children;
+ Misc objects, attached to parents as Misc children.

See hwloc_obj for details about children lists.

For a given object type, the kind may be found with hwloc_obj_type is_normal(), hwloc_obj_type_is_memory(),
hwloc_obj_type_is_normal(), or comparing with HWLOC_OBJ_MISC.

Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc objects don't have any sets
(they are NULL).

Generated by Doxygen

84 Upgrading to the hwloc 2.0 API

20.3 HWLOC_OBJ_CACHE replaced

Instead of a single HWLOC_OBJ_CACHE, there are now 8 types HWLOC_OBJ_L1CACHE, ..., HWLOC_OBJ_L5CACHE,
HWLOC_OBJ_L1ICACHE, ..., HWLOC_OBJ_L3ICACHE.

Cache object attributes are unchanged.

hwloc_get_cache_type_depth() is not needed to disambiguate cache types anymore since new types can be passed to
hwloc_get_type_depth() without ever getting HWLOC_TYPE_DEPTH_MULTIPLE anymore.

hwloc_obj_type_is_cache(), hwloc_obj_type_is_dcache() and hwloc_obj_type_is_icache() may be used to check
whether a given type is a cache, data/unified cache or instruction cache.

20.4 allowed_cpuset and allowed_nodeset only in the main topology

Objects do not have allowed_cpuset and allowed_nodeset anymore. They are only available for the entire
topology using hwloc_topology_get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset().

As usual, those are only needed when the INCLUDE_DISALLOWED topology flag is given, which means disallowed
objects are kept in the topology. If so, one may find out whether some PUs inside an object is allowed by checking

hwloc_bitmap_intersects (obj->cpuset, hwloc_topology_get_allowed_cpuset (topology))

Replace cpusets with nodesets for NUMA nodes. To find out which ones, replace intersects() with and() to get the actual
intersection.

20.5 Object depths are now signed int

obj->depth as well as depths given to functions such as hwloc_get obj by depth() or returned by
hwloc_topology_get_depth() are now signed int.
Other depth such as cache-specific depth attribute are still unsigned.

20.6 Memory attributes become NUMANode-specific

Memory attributes such as ob j—>memory.local_memory are now only available in NUMANode-specific attributes
in obj—->attr->numanode.local_memory.

obj->memory.total_memory is available in all objects as obj—>total_memory.

See hwloc_obj_attr_u::hwloc_numanode_attr_s and hwloc_obj for details.

20.7 Topology configuration changes

The old ignoring APl as well as several configuration flags are replaced with the new filtering API, see
hwloc_topology_set_type_filter() and its variants, and hwloc_type_filter_e for details.

+ hwloc_topology_ignore_type(), hwloc_topology_ignore_type_keep_structure() and hwloc_topology_ignore_all«
_keep_structure() are respectively superseded by

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_NONE) ;

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;
hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;

Also, the meaning of KEEP_STRUCTURE has changed (only entire levels may be ignored, instead of single
objects), the old behavior is not available anymore.

* HWLOC_TOPOLOGY_FLAG_ICACHES is superseded by

hwloc_topology_set_icache_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL);

Generated by Doxygen

20.8 XML changes 85

+ HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC_TOPOLOGY_FLAG_IO_DEVICES and HWLOC_«
TOPOLOGY_FLAG_IO_BRIDGES replaced.

To keep all I/O devices (PCI, Bridges, and OS devices), use:

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL) ;

To only keep important devices (Bridges with children, common PCI devices and OS devices):

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_IMPORTANT) ;

20.8 XML changes

2.0 XML files are not compatible with 1.x

2.0 can load 1.x files, but only NUMA distances are imported. Other distance matrices are ignored (they were never
used by default anyway).

2.0 can export 1.x-compatible files, but only distances attached to the root object are exported (i.e. distances that cover
the entire machine). Other distance matrices are dropped (they were never used by default anyway).

Users are advised to negociate hwloc versions between exporter and importer: If the importer isn't 2.x, the
exporter should export to 1.x. Otherwise, things should work by default.

Hence hwloc_topology_export_xml() and hwloc_topology export_xmilbuffer() have a new flags argument. to force a
hwloc-1.x-compatible XML export.

« If both always support 2.0, don't pass any flag.

* When the importer uses hwloc 1.x, export with HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1. Otherwise the
importer will fail to import.

» When the exporter uses hwloc 1.x, it cannot pass any flag, and a 2.0 importer can import without problem.

#if HWLOC_API_VERSION >= 0x20000
if (need 1.x compatible XML export)

hwloc_topology_export_xml(...., HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1);
else /x need 2.x compatible XML export x/
hwloc_topology_export_xml(...., 0);
#else
hwloc_topology_export_xml(....);
#endif

Additionally, hwloc_topology_diff_load_xml(), hwloc_topology_diff_load_xmlbuffer(), hwloc_topology_diff_export_xml(),
hwloc_topology_diff_export_xmlbuffer() and hwloc_topology_diff_destroy() lost the topology argument: The first argu-
ment (topology) isn't needed anymore.

20.9 Distances API totally rewritten

The new distances API is in hwloc/distances.h.

Distances are not accessible directly from objects anymore. One should first call hwloc_distances_get() (or a variant) to
retrieve distances (possibly with one call to get the number of available distances structures, and another call to actually
get them). Then it may consult these structures, and finally release them.

The set of object involved in a distances structure is specified by an array of objects, it may not always cover the entire
machine or so.

20.10 Return values of functions

Bitmap functions (and a couple other functions) can return errors (in theory).

Most bitmap functions may have to reallocate the internal bitmap storage. In v1.x, they would silently crash if realloc
failed. In v2.0, they now return an int that can be negative on error. However, the preallocated storage is 512 bits, hence
realloc will not even be used unless you run hwloc on machines with larger PU or NUMAnode indexes.

Generated by Doxygen

86 Upgrading to the hwloc 2.0 API

hwloc_obj_add_info(), hwloc_cpuset_from_nodeset() and hwloc_cpuset_from_nodeset() also return an int, which would
be -1 in case of allocation errors.

20.11 Misc API changes

» hwloc_type_sscanf() extends hwloc_obj_type_sscanf() by passing a union hwloc_obj_attr_u which may receive
Cache, Group, Bridge or OS device attributes.

» hwloc_type_sscanf_as_depth() is also added to directly return the corresponding level depth within a topology.

» hwloc_topology_insert_misc_object_by_cpuset() is replaced with hwloc_topology_alloc_group_object() and
hwloc_topology_insert_group_object().

» hwloc_topology_insert_misc_object_by_parent() is replaced with hwloc_topology_insert_misc_object().

20.12 API removals and deprecations

+ HWLOC_OBJ_SYSTEM removed: The root object is always HWLOC_OBJ_MACHINE

+ _membind_nodeset() memory binding interfaces deprecated: One should use the variant without _nodeset suffix
and pass the HWLOC_MEMBIND_BYNODESET flag.

« HWLOC_MEMBIND_REPLICATE removed: no supported operating system supports it anymore.
» hwloc_obj_snprintf() removed because it was long-deprecated by hwloc_obj_type_snprintf() and hwloc_obj_attr_snprintf().
» hwloc_obj_type_sscanf() deprecated, hwloc_obj_type_of_string() removed.

» hwloc_cpuset_from/to_nodeset_strict() deprecated: Now useless since all topologies are NUMA. Use the variant
without the _strict suffix

 hwloc_distribute() and hwloc_distributev() removed, deprecated by hwloc_distriby().

« The Custom interface (hwloc_topology_set_custom(), etc.) was removed, as well as the corresponding command-
line tools (hwloc-assembler, etc.). Topologies always start with object with valid cpusets and nodesets.

* obj->online_cpuset removed: Offline PUs are simply listed in the complete_cpuset as previously.

* obj->o0s_level removed.

Generated by Doxygen

Chapter 21

Topic Index

21.1 Topics

Here is a list of all topics with brief descriptions:

Error reporting inthe APl L e 91
APLversion L e e e 91
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) 92
Object TYPES o o o e e e 93
Object Structure and Attributes L e 97
Topology Creation and Destruction e e 97
Object levels, depths and types L e 100
Converting between Object Types and Attributes, and Strings, 104
Consulting and Adding Info Attributes L 107
CPUDINAING e 108
Memory binding e e e e e 112
Changing the Source of Topology Discovery 0 i 120
Topology Detection Configurationand Query e 123
Modifying a loaded Topology e e e 131
Kinds of object Type e 136
Finding Objectsinside a CPU set e 138
Finding Objects covering atleast CPUset e 141
Looking at Ancestor and Child Objects e 143
Looking at Cache Objects e 145
Finding objects, miscellaneous helpers 146
Distributing items over atopology e 149
CPU and node sets of entire topologies e 150
Converting between CPU setsandnode sets e 152
Finding /O objects L e 153
The bitmap APl 155
Exporting Topologiesto XML e 168
Exporting Topologies to Synthetic 171
Retrieve distances between objects Lo 172
Helpers for consulting distance matrices e 177
Add distances between objects L e 178
Remove distances betweenobjects 180
Comparing memory node attributes for finding where to allocateon, 181
Managing memory attributes L 189
Kinds of CPU Cores e e e e e e 192
Linux-specific helpers e 194
Interoperability with Linux libnuma unsigned longmaskso Lo 195

Generated by Doxygen

88 Topic Index
Interoperability with Linux libnuma bitmask 197
Windows-specific helpers e 199
Interoperability with glibc sched affinity 200
Interoperability with OpenCL o e 201
Interoperability with the CUDA Driver APl e 202
Interoperability with the CUDA Runtime APl e 204
Interoperability with the NVIDIA Management Library 206
Interoperability with the ROCm SMI Management Library 207
Interoperability with the oneAPI Level Zerointerface. oo 209
Interoperability with OpenGL displays e 211
Interoperability with OpenFabrics e 212
Topology differences e e 214
Sharing topologies between processes L 218
Components and Plugins: Discovery components and backends 220
Components and Plugins: Generic components e e 222
Components and Plugins: Core functions to be used by components 223
Components and Plugins: Filteringobjects 225
Components and Plugins: helpers for PCl discovery 226
Components and Plugins: finding PCI objects during other discoveries 227
Components and Plugins: distances L 228

Generated by Doxygen

Chapter 22

Data Structure Index

22.1 Data Structures

Here are the data structures with brief descriptions:

hwloc_backend

Discovery backend structure L
hwloc_obj_attr_u::hwloc_bridge_attr_s

Bridge specific Object Attributes
hwloc_obj_attr_u::hwloc_cache_attr_s

Cache-specific Object Attributes
hwloc_cl_device_pci_bus_info_khr
hwloc_cl_device_topology_amd e e e e
hwloc_component

Generic component structure L L
hwloc_disc_component

Discovery component structure
hwloc_disc_status

Discovery status structure L e e
hwloc_distances_s

Matrix of distances between asetofobjects oo oo,
hwloc_obj_attr_u::hwloc_group_attr_s

Group-specific Object Attributes L
hwloc_info_s

Object info attribute (name and value strings) L L L
hwloc_location

Where to measure attributes from L
hwloc_location::hwloc_location_u

Actual location L
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_typesis0
hwloc_obj_attr_u::hwloc_numanode_attr_s

NUMA node-specific Object Attributes
hwloc_obj

Structure of atopology object
hwloc_obj_attr_u

Object type-specific Attributes e
hwloc_obj_attr_u::hwloc_osdev_attr_s

OS Device specific Object Attributes
hwloc_obj_attr_u::hwloc_pcidev_attr_s

PCI Device specific Object Attributes

Generated by Doxygen

90

Data Structure Index

hwloc_topology_cpubind_support

Flags describing actual PU binding support for thistopology 252
hwloc_topology_diff_u::hwloc_topology_diff_generic_s o 253
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic.s 254
hwloc_topology_diff_u::hwloc_topology_diff obj_attr s oo 254
hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optionalname 255
hwloc_topology_diff_obj_attr_u

One object attribute difference L 256
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s

Integer attribute modification with an optionalindex 256
hwloc_topology_diff_u::hwloc_topology diff_too_complex_s, 257
hwloc_topology_diff _u

One element of a difference list between two topologies 258
hwloc_topology_discovery_support

Flags describing actual discovery support for this topology 258
hwloc_topology_membind_support

Flags describing actual memory binding support for this topology 259
hwloc_topology_misc_support

Flags describing miscellaneous features L oL oo 261
hwloc_topology_support

Set of flags describing actual support for thistopology 262

Generated by Doxygen

Chapter 23

Topic Documentation

23.1 Error reporting in the API

Most functions in the hwloc API return an integer value. Unless documentated differently, they return 0 on success and
-1 on error. Functions that return a pointer type return NULL on error.

errno will be set to a meaningful value whenever possible. This includes the usual EINVAL when invalid function
parameters are passed or ENOMEM when an internal allocation fails. Some specific errno value are also used, for
instance for binding errors as documented in CPU binding.

Some modules describe return values of their functions in their introduction, for instance in The bitmap API.

23.2 API version

Macros

+ #define HWLOC_API_VERSION 0x00020c00
+ #define HWLOC_COMPONENT_ABI 7

Functions

+ unsigned hwloc_get_api_version (void)

23.2.1 Detailed Description

23.2.2 Macro Definition Documentation
23.2.2.1 HWLOC_API_VERSION

#define HWLOC_API_VERSION 0x00020c00

Indicate at build time which hwloc API version is being used.

This number is updated to (X< <16)+(Y<<8)+Z when a new release X.Y.Z actually modifies the API.

Users may check for available features at build time using this number (see How do | handle APl changes?).

Note

This should not be confused with HWLOC_VERSION, the library version. Two stable releases of the same series
usually have the same HWLOC_API_VERSION even if their HWLOC_VERSION are different.

23.2.2.2 HWLOC_COMPONENT_ABI

#define HWLOC_COMPONENT_ABI 7
Current component and plugin ABI version (see hwloc/plugins.h)

Generated by Doxygen

92 Topic Documentation

23.2.3 Function Documentation
23.2.3.1 hwloc_get_api_version()

unsigned hwloc_get_api_version (

void)
Indicate at runtime which hwloc API version was used at build time.
Should be HWLOC_API_VERSION if running on the same version.

Returns

the build-time version number.

23.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

« typedef hwloc_bitmap_t hwloc_cpuset_t

« typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
« typedef hwloc_bitmap_t hwloc_nodeset_t

« typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

23.3.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets
(hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all the
hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are
the same (e.g., enable and disable individual items in the set/mask), they're used in very different contexts: one for
specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference is
really just to reflect the intent of where the type is used.

23.3.2 Typedef Documentation

23.3.2.1 hwloc_const_cpuset_t

typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
A non-modifiable hwloc_cpuset_t.

23.3.2.2 hwloc_const_nodeset_t

typedef hwloc_const_bitmap_t hwloc_const_nodeset_t
A non-modifiable hwloc_nodeset_t.

23.3.2.3 hwloc_cpuset_t

typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).
Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

23.3.2.4 hwloc_nodeset_t

typedef hwloc_bitmap_t hwloc_nodeset_t
A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

Generated by Doxygen

23.4 Object Types 93

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may be
converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

When binding memory on a system without any NUMA node, the single main memory bank is considered as NUMA
node #0.

See also Converting between CPU sets and node sets.

23.4 Object Types

Macros

+ #define HWLOC_TYPE_UNORDERED

Typedefs

+ typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
+ typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
+ typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Enumerations

* enum hwloc_obj_type_t {
HWLOC_OBJ_MACHINE , HWLOC_OBJ_PACKAGE , HWLOC_OBJ_CORE , HWLOC _OBJ _PU,
HWLOC_OBJ_L1CACHE , HWLOC_OBJ_L2CACHE , HWLOC OBJ_L3CACHE , HWLOC_OBJ_L4CACHE ,
HWLOC_OBJ_L5CACHE , HWLOC_OBJ_L1ICACHE , HWLOC OBJ_L2ICACHE , HWLOC OBJ_ L3ICACHE,
HWLOC_0OBJ_GROUP , HWLOC_OBJ NUMANODE , HWLOC OBJ_ BRIDGE , HWLOC_0OBJ_PCI_DEVICE ,
HWLOC_OBJ_OS_DEVICE , HWLOC_OBJ_MISC , HWLOC OBJ_ _MEMCACHE , HWLOC OBJ DIE,
HWLOC_OBJ_TYPE_MAX }

» enum hwloc_obj_cache_type_e { HWLOC_OBJ_CACHE_UNIFIED , HWLOC_OBJ_CACHE_DATA , HWLOC_OBJ_CACHE_INSTF
1

+ enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST , HWLOC_OBJ_BRIDGE_PCI }

» enum hwloc_obj_osdev_type_e {
HWLOC_OBJ OSDEV _BLOCK , HWLOC OBJ OSDEV GPU , HWLOC OBJ OSDEV_NETWORK
HWLOC_OBJ_OSDEV_OPENFABRICS,
HWLOC_OBJ_OSDEV_DMA , HWLOC_OBJ_OSDEV_COPROC }

Functions

« int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

23.4.1 Detailed Description
23.4.2 Macro Definition Documentation
23.4.2.1 HWLOC_TYPE_UNORDERED

#define HWLOC_TYPE_UNORDERED
Value returned by hwloc_compare_types() when types can not be compared.

23.4.3 Typedef Documentation
23.4.3.1 hwloc_obj_bridge_type_t

typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
Type of one side (upstream or downstream) of an 1/O bridge.

Generated by Doxygen

94 Topic Documentation

23.4.3.2 hwloc_obj_cache_type_t

typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
Cache type.

23.4.3.3 hwloc_obj_osdev_type_t

typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t
Type of a OS device.

23.4.4 Enumeration Type Documentation
23.4.4.1 hwloc_obj_bridge_type_e

enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an 1/O bridge.
Enumerator

HWLOC_OBJ_BRIDGE_HOST | Host-side of a bridge, only possible upstream.
HWLOC_OBJ_BRIDGE_PCI | PCl-side of a bridge.

23.4.4.2 hwloc_obj_cache_type e

enum hwloc_obj_cache_type_e

Cache type.

Enumerator

HWLOC_OBJ_CACHE_UNIFIED | Unified cache.
HWLOC_OBJ_CACHE_DATA | Data cache.
HWLOC_OBJ_CACHE_INSTRUCTION | Instruction cache (filtered out by default).

23.4.4.3 hwloc_obj_osdev_type_e

enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator

HWLOC_OBJ_OSDEV_BLOCK | Operating system block device, or non-volatile memory device. For
instance "sda" or "dax2.0" on Linux.

HWLOC_OBJ_OSDEV_GPU | Operating system GPU device. For instance ":0.0" for a GL display,
"card0" for a Linux DRM device.

HWLOC_OBJ_OSDEV_NETWORK | Operating system network device. For instance the "ethQ" interface on
Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS | Operating system openfabrics device. For instance the "mix4_0"
InfiniBand HCA, "hfi1_0" Omni-Path interface, or "bxi0" Atos/Bull BXI
HCA on Linux.

HWLOC_OBJ_OSDEV_DMA | Operating system dma engine device. For instance the "dmaOchan0"
DMA channel on Linux.

HWLOC_OBJ_OSDEV_COPROC | Operating system co-processor device. For instance "opencl0d0" for a
OpenCL device, "cuda0" for a CUDA device.

Generated by Doxygen

23.4 Object Types

95

23.4.4.4 hwloc_obj_type_t

enum hwloc_obj_type_t
Type of topology object.

Note

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If you need
to compare types, use hwloc_compare_types() instead.

Enumerator

HWLOC_OBJ_MACHINE

Machine. A set of processors and memory with cache coherency. This type is
always used for the root object of a topology, and never used anywhere else.
Hence its parent is always NULL.

HWLOC_OBJ_PACKAGE

Physical package. The physical package that usually gets inserted into a socket on
the motherboard. A processor package usually contains multiple cores, and
possibly some dies.

HWLOC_OBJ_CORE

Core. A computation unit (may be shared by several PUs, aka logical processors).

HWLOC_OBJ_PU

Processing Unit, or (Logical) Processor. An execution unit (may share a core with
some other logical processors, e.g. in the case of an SMT core). This is the
smallest object representing CPU resources, it cannot have any child except Misc
objects.

Objects of this kind are always reported and can thus be used as fallback when
others are not.

HWLOC_OBJ_L1CACHE

Level 1 Data (or Unified) Cache.

HWLOC_OBJ_L2CACHE

Level 2 Data (or Unified) Cache.

HWLOC_OBJ_L3CACHE

HWLOC_OBJ_L4CACHE

()

()
Level 3 Data (or Unified) Cache.
Level 4 Data (or Unified) Cache.

HWLOC_OBJ_L5CACHE

Level 5 Data (or Unified) Cache.

HWLOC_OBJ_L1ICACHE

Level 1 instruction Cache (filtered out by default).

HWLOC_OBJ_L2ICACHE

Level 2 instruction Cache (filtered out by default).

HWLOC_OBJ_L3ICACHE

Level 3 instruction Cache (filtered out by default).

HWLOC_OBJ_GROUP

Group objects. Objects which do not fit in the above but are detected by hwloc and
are useful to take into account for affinity. For instance, some operating systems
expose their arbitrary processors aggregation this way. And hwloc may insert such
objects to group NUMA nodes according to their distances. See also

What are these Group objects in my topology?. These objects are removed when
they do not bring any structure (see
HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

Generated by Doxygen

96

Topic Documentation

Enumerator

HWLOC_OBJ_NUMANODE

NUMA node. An object that contains memory that is directly and byte-accessible to
the host processors. It is usually close to some cores (the corresponding objects
are descendants of the NUMA node object in the hwloc tree). This is the smallest
object representing Memory resources, it cannot have any child except Misc
objects. However it may have Memory-side cache parents.

NUMA nodes may correspond to different kinds of memory (DRAM, HBM,
CXL-DRAM, etc.). When hwloc is able to guess that kind, it is specified in the
subtype field of the object. See also Normal attributes in the main documentation.
There is always at least one such object in the topology even if the machine is not
NUMA.

Memory objects are not listed in the main children list, but rather in the dedicated
Memory children list.

NUMA nodes have a special depth HWLOC_TYPE_DEPTH_NUMANODE instead
of a normal depth just like other objects in the main tree.

HWLOC_OBJ_BRIDGE

Bridge (filtered out by default). Any bridge (or PCI switch) that connects the host or
an 1/O bus, to another 1/O bus. Bridges are not added to the topology unless their
filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0 objects have NULL CPU and node sets.

HWLOC_OBJ_PCI_DEVICE

PCI device (filtered out by default). PCI devices are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0O objects have NULL CPU and node sets.

HWLOC_OBJ_OS_DEVICE

Operating system device (filtered out by default). OS devices are not added to the
topology unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. I/O objects have NULL CPU and node sets.

HWLOC_OBJ_MISC

Miscellaneous objects (filtered out by default). Objects without particular meaning,
that can e.g. be added by the application for its own use, or by hwloc for
miscellaneous objects such as MemoryModule (DIMMs). They are not added to the
topology unless their filtering is changed (see hwloc_topology_set_type_filter()).
These objects are not listed in the main children list, but rather in the dedicated
misc children list. Misc objects may only have Misc objects as children, and those
are in the dedicated misc children list as well. Misc objects have NULL CPU and
node sets.

HWLOC_OBJ_MEMCACHE

Memory-side cache (filtered out by default). A cache in front of a specific NUMA
node. This object always has at least one NUMA node as a memory child.
Memory objects are not listed in the main children list, but rather in the dedicated
Memory children list.

Memory-side cache have a special depth HWLOC_TYPE_DEPTH_MEMCACHE
instead of a normal depth just like other objects in the main tree.

HWLOC_OBJ_DIE

Die within a physical package. A subpart of the physical package, that contains
multiple cores. Some operating systems (e.g. Linux) may expose a single die per
package even if the hardware does not support dies at all. To avoid showing such
non-existing dies, hwloc will filter them out if all of them are identical to packages.
This is functionally equivalent to HWLOC_TYPE_FILTER_KEEP_STRUCTURE
being enforced for Dies versus Packages.

Generated by Doxygen

23.5 Object Structure and Attributes 97

23.4.5 Function Documentation
23.4.5.1 hwloc_compare_types()

int hwloc_compare_types (
hwloc_obij_type_t typel,
hwloc_obj_type_t type2)
Compare the depth of two object types.
Types shouldn't be compared as they are, since newer ones may be added in the future.

Returns

A negative integer if t ypel objects usually include t ype2 objects.

A positive integer if t ypel objects are usually included in t ype2 objects.

0if typel and type?2 objects are the same.

HWLOC_TYPE_UNORDERED if objects cannot be compared (because neither is usually contained in the other).

Note

Object types containing CPUs can always be compared (usually, a machine contains packages, which contain
caches, which contain cores, which contain PUs).

HWLOC_OBJ_PU will always be the deepest, while HWLOC_OBJ_MACHINE is always the highest.

This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain caches,
and packages may also contain nodes. This is thus just to be seen as a fallback comparison method.

23.5 Object Structure and Attributes

Data Structures
« struct hwloc_obj
* union hwloc_obj_attr_u
« struct hwloc_info_s
Typedefs

« typedef struct hwloc_obj x hwloc_obj_t

23.5.1 Detailed Description

23.5.2 Typedef Documentation
23.5.2.1 hwloc_obj_t

typedef struct hwloc_obj*x hwloc_obj_t
Convenience typedef; a pointer to a struct hwloc_ob;.

23.6 Topology Creation and Destruction

Typedefs

« typedef struct hwloc_topology * hwloc_topology_t

Generated by Doxygen

98 Topic Documentation

Functions

« int hwloc_topology_init (hwloc_topology_t xtopologyp)

« int hwloc_topology_load (hwloc_topology_t topology)

« void hwloc_topology_destroy (hwloc_topology_t topology)

« int hwloc_topology_dup (hwloc_topology_t xnewtopology, hwloc_topology_t oldtopology)
« int hwloc_topology_abi_check (hwloc_topology_t topology)

« void hwloc_topology_check (hwloc_topology_t topology)

23.6.1 Detailed Description

23.6.2 Typedef Documentation
23.6.2.1 hwloc_topology_t

typedef struct hwloc_topology* hwloc_topology_t
Topology context.
To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

23.6.3 Function Documentation
23.6.3.1 hwloc_topology_abi_check()

int hwloc_topology_abi_check (

hwloc_topology_t topology)
Verify that the topology is compatible with the current hwloc library.
This is useful when using the same topology structure (in memory) in different libraries that may use different hwloc
installations (for instance if one library embeds a specific version of hwloc, while another library uses a default system-
wide hwloc installation).
If all libraries/programs use the same hwloc installation, this function always returns success.

Returns

0 on success.

-1 with errno set to EINVAL if incompatible.

Note

If sharing between processes with hwloc_shmem_topology_write(), the relevant check is already performed inside
hwloc_shmem_topology_adopt().

23.6.3.2 hwloc_topology_check()

void hwloc_topology_check (
hwloc_topology_t topology)
Run internal checks on a topology structure.
The program aborts if an inconsistency is detected in the given topology.

Parameters

topology | is the topology to be checked

Generated by Doxygen

23.6 Topology Creation and Destruction 929

Note

This routine is only useful to developers.

The input topology should have been previously loaded with hwloc_topology_load().

23.6.3.3 hwloc_topology destroy()

void hwloc_topology_destroy (
hwloc_topology_t topology)
Terminate and free a topology context.

Parameters

topology | is the topology to be freed ‘

23.6.3.4 hwloc_topology_dup()

int hwloc_topology_dup (
hwloc_topology_t * newtopology,
hwloc_topology_t oldtopology)
Duplicate a topology.
The entire topology structure as well as its objects are duplicated into a new one.
This is useful for keeping a backup while modifying a topology.

Returns

0 on success, -1 on error.

Note

Object userdata is not duplicated since hwloc does not know what it point to. The objects of both old and new
topologies will point to the same userdata.

23.6.3.5 hwloc_topology_init()

int hwloc_topology_init (
hwloc_topology_t * topologyp)
Allocate a topology context.

Parameters

‘ out ‘ topologyp | is assigned a pointer to the new allocated context.

Returns

0 on success, -1 on error.

23.6.3.6 hwloc_topology_load()

int hwloc_topology_load (
hwloc_topology_t topology)
Build the actual topology.

Generated by Doxygen

100 Topic Documentation

Build the actual topology once initialized with hwloc_topology_init() and tuned with Topology Detection Configuration and Query
and Changing the Source of Topology Discovery routines. No other routine may be called earlier using this topology
context.

Parameters

topology | is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

Note

On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy() or configured
and loaded again.

This function may be called only once per topology.

The binding of the current thread or process may temporarily change during this call but it will be restored before
it returns.

See also

Topology Detection Configuration and Query and Changing the Source of Topology Discovery

23.7 Object levels, depths and types

Enumerations

» enum hwloc_get_type_depth_e {
HWLOC_TYPE_DEPTH_UNKNOWN , HWLOC_TYPE_DEPTH_MULTIPLE , HWLOC_TYPE_DEPTH_NUMANODE
, HWLOC_TYPE_DEPTH_BRIDGE ,
HWLOC_TYPE_DEPTH_PCI_DEVICE , HWLOC_TYPE_DEPTH_OS_DEVICE , HWLOC_TYPE_DEPTH_MISC
, HWLOC_TYPE_DEPTH_MEMCACHE }

Functions

« int hwloc_topology_get_depth (hwloc_topology_t restrict topology)

« int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

+ int hwloc_get_memory_parents_depth (hwloc_topology_t topology)

« int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)

+ unsigned hwloc_get_nbobjs_by depth (hwloc_topology_t topology, int depth)

« int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology)

» hwloc_obj_t hwloc_get_obj_by_depth (hwloc_topology_t topology, int depth, unsigned idx)

» hwloc_obj_t hwloc_get _obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx)
» hwloc_obj_t hwloc_get next_obj_by depth (hwloc_topology_t topology, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, hwloc_obj_t prev)

23.7.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

Generated by Doxygen

23.7 Object levels, depths and types 101

23.7.2 Enumeration Type Documentation
23.7.2.1 hwloc_get_type_depth_e

enum hwloc_get_type_depth_e

Enumerator

HWLOC_TYPE_DEPTH_UNKNOWN | No object of given type exists in the topology.
HWLOC_TYPE_DEPTH_MULTIPLE | Objects of given type exist at different depth in the topology (only for

Groups).

HWLOC_TYPE_DEPTH_NUMANODE | Virtual depth for NUMA nodes.

HWLOC_TYPE_DEPTH_BRIDGE | Virtual depth for bridge object level.
HWLOC_TYPE_DEPTH_PCI_DEVICE | Virtual depth for PCI device object level.
HWLOC_TYPE_DEPTH_OS_DEVICE | Virtual depth for software device object level.

HWLOC_TYPE_DEPTH_MISC | Virtual depth for Misc object.
HWLOC_TYPE_DEPTH_MEMCACHE | Virtual depth for MemCache object.

23.7.3 Function Documentation
23.7.3.1 hwloc_get_depth_type()

hwloc_obj_type_t hwloc_get_depth_type (
hwloc_topology_t topology,
int depth)
Returns the type of objects at depth depth.
depth should between 0 and hwloc_topology_get_depth()-1, or a virtual depth such as HWLOC_TYPE_DEPTH_NUMANODE.

Returns

The type of objects at depth depth.
(hwloc_obj_type_t)-1 if depth depth does not exist.

23.7.3.2 hwloc_get_memory_parents_depth()

int hwloc_get_memory_parents_depth (

hwloc_topology_t topology)
Return the depth of parents where memory objects are attached.
Memory objects have virtual negative depths because they are not part of the main CPU-side hierarchy of objects. This
depth should not be compared with other level depths.
If all Memory objects are attached to Normal parents at the same depth, this parent depth may be compared to other as
usual, for instance for knowing whether NUMA nodes is attached above or below Packages.

Returns

The depth of Normal parents of all memory children if all these parents have the same depth. For instance the
depth of the Package level if all NUMA nodes are attached to Package objects.

HWLOC_TYPE_DEPTH_MULTIPLE if Normal parents of all memory children do not have the same depth. For
instance if some NUMA nodes are attached to Packages while others are attached to Groups.

Generated by Doxygen

102 Topic Documentation

23.7.3.3 hwloc_get_nbobjs_by_depth()

unsigned hwloc_get_nbobjs_by_depth (
hwloc_topology_t topology,
int depth)

Returns the width of level at depth depth.

Returns

The number of objects at topology depth depth.
0 if there are no objects at depth depth.

23.7.3.4 hwloc_get_nbobjs_by type()

int hwloc_get_nbobjs_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the width of level type type.

Returns

The number of objects of type type.
-1 if there are multiple levels with objects of that type, e.g. HWLOC_OBJ_GROUP.
0 if there are no objects at depth depth.

23.7.3.5 hwloc_get_next_obj_by_depth()

hwloc_obj_t hwloc_get_next_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obj_t prev) [inline]

Returns the next object at depth depth.
Returns

The first object at depth depth if prev is NULL.
The object after prev at depth depth if prev is not NULL.

NULL if there is no such object.

23.7.3.6 hwloc_get_next_obj_by_ type()

hwloc_obj_t hwloc_get_next_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]

Returns the next object of type type.
Returns

The first object of type type if prev is NULL.
The object after prev of type type if prev is not NULL.
NULL if there is no such object.

NULL if there are multiple levels with objects of that type (e.9. HWLOC_OBJ_GROUP), the caller may fallback to
hwloc_get_obj_by_depth().

Generated by Doxygen

23.7 Object levels, depths and types 103

23.7.3.7 hwloc_get_obj_by_depth()

hwloc_obj_t hwloc_get_obj_by_depth (
hwloc_topology_t topology,
int depth,
unsigned idx)

Returns the topology object at logical index idx from depth depth.
Returns

The object if it exists.
NULL if there is no object with this index and depth.

23.7.3.8 hwloc_get_obj_by_type()

hwloc_obj_t hwloc_get_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned idx) [inline]

Returns the topology object at logical index idx with type type.
Returns

The object if it exists.
NULL if there is no object with this index and type.

NULL if there are multiple levels with objects of that type (e.g. HWLOC_OBJ_GROUP), the caller may fallback to
hwloc_get_obj_by_depth().

23.7.3.9 hwloc_get_root_obj()

hwloc_obj_t hwloc_get_root_obj (
hwloc_topology_t topology) [inline]
Returns the top-object of the topology-tree.
Its type is HWLOC_OBJ_MACHINE.
This function cannot return NULL.

23.7.3.10 hwloc_get_type_depth()

int hwloc_get_type_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type)

Returns the depth of objects of type type.

Returns

The depth of objects of type type.

A negative virtual depth if a NUMA node, I/O or Misc object type is given. These objects are stored in spe-
cial levels that are not CPU-related. This virtual depth may be passed to other hwloc functions such as
hwloc_get_obj_by_depth() but it should not be considered as an actual depth by the application. In particular,
it should not be compared with any other object depth or with the entire topology depth.

HWLOC_TYPE_DEPTH_UNKNOWN if no object of this type is present on the underlying architecture, or if the
OS doesn't provide this kind of information.

HWLOC_TYPE_DEPTH_MULTIPLE if type HWLOC_OBJ_GROUP is given and multiple levels of Groups exist.

Generated by Doxygen

104 Topic Documentation

Note

If the type is absent but a similar type is acceptable, see also hwloc_get_type or_below_depth() and
hwloc_get_type_or_above_depth().

See also

hwloc_get_memory_parents_depth() for managing the depth of memory objects.

hwloc_type_sscanf_as_depth() for returning the depth of objects whose type is given as a string.

23.7.3.11 hwloc_get_type_or_above_depth()

int hwloc_get_type_or_above_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the depth of objects of type t ype or above.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically containing t ype.
This function is only meaningful for normal object types. If a memory, I/0O or Misc object type is given, the corresponding
virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

23.7.3.12 hwloc_get_type_or_below_depth()

int hwloc_get_type_or_below_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the depth of objects of type t ype or below.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically found inside type.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corresponding
virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

23.7.3.13 hwloc_topology_get_depth()

int hwloc_topology_get_depth (

hwloc_topology_t restrict topology)
Get the depth of the hierarchical tree of objects.
This is the depth of HWLOC_OBJ_PU objects plus one.

Returns

the depth of the object tree.

Note

NUMA nodes, I/0 and Misc objects are ignored when computing the depth of the tree (they are placed on special
levels).

23.8 Converting between Object Types and Attributes, and Strings

Functions

» const char x hwloc_obj_type_string (hwloc_obj_type_t type)

Generated by Doxygen

23.8 Converting between Object Types and Attributes, and Strings 105

« int hwloc_obj_type_snprintf (char xrestrict string, size_t size, hwloc_obj_t obj, int verbose)
« int hwloc_obj_attr_snprintf (char *restrict string, size_t size, hwloc_obj_t obj, const char xrestrict separator, int

verbose)

« int hwloc_type_sscanf (const char xstring, hwloc_obj_type_t xtypep, union hwloc_obj_attr_u xattrp, size_t attr-
size)

+ int hwloc_type_sscanf_as_depth (const char xstring, hwloc_obj_type_t xtypep, hwloc_topology_t topology, int
xdepthp)

23.8.1 Detailed Description

23.8.2 Function Documentation
23.8.2.1 hwloc_obj_attr_snprintf()

int hwloc_obj_attr_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
const char *restrict separator,
int verbose)
Stringify the attributes of a given topology object into a human-readable form.
Attribute values are separated by separator.
Only the major attributes are printed in non-verbose mode.
If sizeis 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

23.8.2.2 hwloc_obj_type_snprintf()

int hwloc_obj_type_snprintf (
char *restrict string,
size_t size,
hwloc_obij_t obj,
int verbose)
Stringify the type of a given topology object into a human-readable form.
Contrary to hwloc_obj_type_string(), this function includes object-specific attributes (such as the Group depth, the Bridge
type, or OS device type) in the output, and it requires the caller to provide the output buffer.
The output is guaranteed to be the same for all objects of a same topology level.
If verbose is 1, longer type names are used, e.g. L1Cache instead of L1.
The output string may be parsed back by hwloc_type_sscanf().
If sizeis 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

23.8.2.3 hwloc_obj_type_string()

const char * hwloc_obj_type_string (
hwloc_obj_type_t type)
Return a constant stringified object type.

Generated by Doxygen

106 Topic Documentation

This function is the basic way to convert a generic type into a string. The output string may be parsed back by
hwloc_type_sscanf().

hwloc_obj_type_snprintf() may return a more precise output for a specific object, but it requires the caller to provide the
output buffer.

Returns

A constant string containing the object type name or "Unknown".

23.8.2.4 hwloc_type_sscanf()

int hwloc_type_sscanf (

const char % string,

hwloc_obj_type_t * typep,

union hwloc_obj_attr_u * attrp,

size_t attrsize)
Return an object type and attributes from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types. Matching is case-insensitive, and only
the first letters are actually required to match.
The matched object type is set in t ypep (which cannot be NULL).
Type-specific attributes, for instance Cache type, Cache depth, Group depth, Bridge type or OS Device type may be
returned in attrp. Atftributes that are not specified in the string (for instance "Group" without a depth, or "L2Cache"
without a cache type) are set to -1.
attrp is only filled if not NULL and if its size specified in attrsize is large enough. It should be at least as large as
union hwloc_obj_attr_u.

Returns

0 if a type was correctly identified, otherwise -1.

Note

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

This is an extended version of the now deprecated hwloc_obj_type_sscanf().

23.8.2.5 hwloc_type_sscanf_as_depth()

int hwloc_type_sscanf_as_depth (
const char * string,
hwloc_obj_type_t * typep,
hwloc_topology_t topology,
int * depthp)
Return an object type and its level depth from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types and return in depthp the depth of the
corresponding level in the topology topology.
If no object of this type is present on the underlying architecture, HWLOC_TYPE_DEPTH_UNKNOWN is returned.
If multiple such levels exist (for instance if giving Group without any depth), the function may return HWLOC_TYPE_DEPTH_MULTIPLE
instead.
The matched object type is set in typep if t ypep is non NULL.

Note

This function is similar to hwloc_type_sscanf() followed by hwloc_get_type_depth() but it also automatically dis-
ambiguates multiple group levels etc.

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

Generated by Doxygen

23.9 Consulting and Adding Info Attributes 107

23.9 Consulting and Adding Info Attributes

Functions

« const char x hwloc_obj_get_info_by _name (hwloc_obj_t obj, const char xname)
« int hwloc_obj_add_info (hwloc_obj_t obj, const char xname, const char xvalue)
« int hwloc_obj_set_subtype (hwloc_topology_t topology, hwloc_obj_t obj, const char xsubtype)

23.9.1 Detailed Description

23.9.2 Function Documentation
23.9.2.1 hwloc_obj_add_info()

int hwloc_obj_add_info (
hwloc_obij_t obj,
const char * name,
const char *x value)
Add the given name and value pair to the given object info attributes.
The info pair is appended to the existing info array even if another pair with the same name already exists.
The input strings are copied before being added in the object infos.

Returns

0 on success, —1 on error.

Note

This function may be used to enforce object colors in the Istopo graphical output by adding "IstopoStyle" as a name
and "Background=#rrggbb" as a value. See CUSTOM COLORS in the Istopo(1) manpage for details.

If name or value contain some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

23.9.2.2 hwloc_obj_get_info_by name()

const char * hwloc_obj_get_info_by_name (
hwloc_obj_t obj,
const char *x name) [inline]
Search the given name in object infos and return the corresponding value.
If multiple info attributes match the given name, only the first one is returned.

Returns

A pointer to the value string if it exists.

NULL if no such info attribute exists.

Note

The string should not be freed by the caller, it belongs to the hwloc library.

23.9.2.3 hwloc_obj_set_subtype()

int hwloc_obj_set_subtype (
hwloc_topology_t topology,
hwloc_obj_t obj,

const char * subtype)

Generated by Doxygen

108 Topic Documentation

Set (or replace) the subtype of an object.

The given subtype is copied internally, the caller is responsible for freeing the original subt ype if needed.

If another subtype already exists in ob ject, it is replaced. The given subtype may be NULL to remove the existing
subtype.

Note
This function is mostly meant to initialize the subtype of user-added objects such as groups with
hwloc_topology_alloc_group_object().

Returns

0 on success.

-1 with errno set to ENOMEM on failure to allocate memory.

23.10 CPU binding

Enumerations

+ enum hwloc_cpubind_flags_t { HWLOC_CPUBIND_PROCESS , HWLOC_CPUBIND_THREAD , HWLOC_CPUBIND_STRICT
, HWLOC_CPUBIND_NOMEMBIND }

Functions

« int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

« int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int flags)

+ int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

« int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_cpuset_t set, int
flags)

« int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int flags)

« int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

23.10.1 Detailed Description

Some operating systems only support binding threads or processes to a single PU. Others allow binding to larger sets
such as entire Cores or Packages or even random sets of individual PUs. In such operating system, the scheduler is free
to run the task on one of these PU, then migrate it to another PU, etc. It is often useful to call hwloc_bitmap_singlify() on
the target CPU set before passing it to the binding function to avoid these expensive migrations. See the documentation
of hwloc_bitmap_singlify() for details.

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc.
hwloc_topology_get_support() may be used to query about the actual CPU binding support in the currently used
operating system.

When the requested binding operation is not available and the HWLOC_CPUBIND_STRICT flag was passed, the func-
tion returns -1. errno is setto ENOSYS when it is not possible to bind the requested kind of object processes/threads.
errno is set to EXDEV when the requested cpuset can not be enforced (e.g. some systems only allow one CPU, and
some other systems only allow one NUMA node).

If HWLOC_CPUBIND_STRICT was not passed, the function may fail as well, or the operating system may use a slightly
different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly supported.
The most portable version that should be preferred over the others, whenever possible, is the following one which just

binds the current program, assuming it is single-threaded:
hwloc_set_cpubind(topology, set, 0),

If the program may be multithreaded, the following one should be preferred to only bind the current thread:
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),

Generated by Doxygen

23.10 CPU binding 109

See also

Some example codes are available under doc/examples/ in the source tree.

Note

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.
On some operating systems, CPU binding may have effects on memory binding, see HWLOC_CPUBIND_NOMEMBIND

Running Istopo --top or hwloc-ps can be a very convenient tool to check how binding actually happened.

23.10.2 Enumeration Type Documentation
23.10.2.1 hwloc_cpubind_flags_t

enum hwloc_cpubind_flags_t

Process/Thread binding flags.

These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is the most
portable way to bind as all operating systems usually provide it.

Note

Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding for a description
of errors that can occur.

Enumerator

HWLOC_CPUBIND_PROCESS | Bind all threads of the current (possibly) multithreaded process.
HWLOC_CPUBIND_THREAD | Bind current thread of current process.

HWLOC_CPUBIND_STRICT | Request for strict binding from the OS. By default, when the designated
CPUs are all busy while other CPUs are idle, operating systems may
execute the thread/process on those other CPUs instead of the designated
CPUs, to let them progress anyway. Strict binding means that the
thread/process will _never_ execute on other CPUs than the designated
CPUs, even when those are busy with other tasks and other CPUs are idle.

Note

Depending on the operating system, strict binding may not be possible
(e.g., the OS does not implement it) or not allowed (e.g., for an
administrative reasons), and the function will fail in that case.

When retrieving the binding of a process, this flag checks whether all its
threads actually have the same binding. If the flag is not given, the binding of
each thread will be accumulated.

Note

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND | Avoid any effect on memory binding. On some operating systems, some
CPU binding function would also bind the memory on the corresponding
NUMA node. It is often not a problem for the application, but if it is, setting
this flag will make hwloc avoid using OS functions that would also bind
memory. This will however reduce the support of CPU bindings, i.e.
potentially return -1 with errno set to ENOSYS in some cases.

This flag is only meaningful when used with functions that set the CPU
binding. It is ignored when used with functions that get CPU binding
information

Generated by Doxygen

110 Topic Documentation

23.10.3 Function Documentation
23.10.3.1 hwloc_get_cpubind()

int hwloc_get_cpubind (
hwloc_topology_t topology,
hwloc_cpuset_t set,
int flags)
Get current process or thread binding.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread (according
to flags) was last bound to.

Returns

0 on success, -1 on error.

23.10.3.2 hwloc_get_last_cpu_location()

int hwloc_get_last_cpu_location (

hwloc_topology_t topology,

hwloc_cpuset_t set,

int flags)
Get the last physical CPU where the current process or thread ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread (according
to flags) last ran on.
The operating system may move some tasks from one processor to another at any time according to their binding, so
this function may return something that is already outdated.
flags can include either HWLOC_CPUBIND_PROCESS or HWLOC_CPUBIND_THREAD to specify whether the
query should be for the whole process (union of all CPUs on which all threads are running), or only the current thread. If
the process is single-threaded, flags can be set to zero to let hwloc use whichever method is available on the underlying
0S.

Returns

0 on success, -1 on error.

23.10.3.3 hwloc_get_proc_cpubind()

int hwloc_get_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of process pid.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process was last bound to.

Returns

0 on success, -1 on error.

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND«
_THREAD is passed in flags, the binding for that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

Generated by Doxygen

23.10 CPU binding 111

23.10.3.4 hwloc_get_proc_last_cpu_location()

int hwloc_get_proc_last_cpu_location (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the last physical CPU where a process ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process last ran on.
The operating system may move some tasks from one processor to another at any time according to their binding, so
this function may return something that is already outdated.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND_THREAD
is passed in flags, the last CPU location of that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

23.10.3.5 hwloc_get_thread_cpubind()

int hwloc_get_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of thread t 1d.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound to.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

23.10.3.6 hwloc_set_cpubind()

int hwloc_set_cpubind (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int flags)

Bind current process or thread on CPUs given in physical bitmap set.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.
-1 with errno set to EXDEV if the binding cannot be enforced.

Generated by Doxygen

112 Topic Documentation

23.10.3.7 hwloc_set_proc_cpubind()

int hwloc_set_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_const_cpuset_t set,
int flags)
Bind a process pid on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND_THREAD
is passed in flags, the binding is applied to that specific thread.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

23.10.3.8 hwloc_set_thread_cpubind()

int hwloc_set_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_const_cpuset_t set,
int flags)

Bind a thread t hread on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

23.11 Memory binding

Enumerations

* enum hwloc_membind_policy_t {

HWLOC_MEMBIND_DEFAULT , HWLOC_MEMBIND_FIRSTTOUCH , HWLOC_MEMBIND_BIND , HWLOC_MEMBIND_INTERLE

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE , HWLOC_MEMBIND_NEXTTOUCH , HWLOC_MEMBIND_MIXED
}

* enum hwloc_membind_flags_t {

HWLOC_MEMBIND_PROCESS , HWLOC_MEMBIND_THREAD , HWLOC_MEMBIND_STRICT , HWLOC_MEMBIND_MIGRATE

HWLOC_MEMBIND_NOCPUBIND , HWLOC_MEMBIND_BYNODESET }

Generated by Doxygen

23.11 Memory binding 113

Functions

« int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set, hwloc_membind_policy_t policy,
int flags)

« int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set, hwloc_membind_policy_t xpolicy, int
flags)

» int hwloc_set_proc_membind (hwloc_topology t topology, hwloc_pid t pid, hwloc_const bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« inthwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_bitmap_t set, hwloc_membind_policy_t
xpolicy, int flags)

« int hwloc_set_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_const_bitmap_t
set, hwloc_membind_policy_t policy, int flags)

« int hwloc_get_area_membind (hwloc_topology t topology, const void *addr, size_t len, hwloc_bitmap_t set,
hwloc_membind_policy_t *policy, int flags)

« int hwloc_get_area_memlocation (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t set,
int flags)

« void x hwloc_alloc (hwloc_topology_t topology, size_t len)

« void * hwloc_alloc_membind (hwloc_topology_t topology, size_t len, hwloc_const_bitmap_t set, hwloc_membind_policy_t
policy, int flags)

« void * hwloc_alloc_membind_policy (hwloc_topology t topology, size_t len, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

+ int hwloc_free (hwloc_topology_t topology, void xaddr, size_t len)

23.11.1 Detailed Description

Memory binding can be done three ways:

« explicit memory allocation thanks to hwloc_alloc_membind() and friends: the binding will have effect on the mem-
ory allocated by these functions.

« implicit memory binding through binding policy: hwloc_set_membind() and friends only define the current policy
of the process, which will be applied to the subsequent calls to malloc() and friends.

+ migration of existing memory ranges, thanks to hwloc_set_area_membind() and friends, which move already-
allocated data.

Not all operating systems support all three ways. hwloc_topology_get_support() may be used to query about the actual
memory binding support in the currently used operating system.

When the requested binding operation is not available and the HWLOC_MEMBIND_STRICT flag was passed, the
function returns -1. errno will be set to ENOSYS when the system does support the specified action or policy (e.g.,
some systems only allow binding memory on a per-thread basis, whereas other systems only allow binding memory for
all threads in a process). errno will be set to EXDEV when the requested set can not be enforced (e.g., some systems
only allow binding memory to a single NUMA node).

If HWLOC_MEMBIND_STRICT was not passed, the function may fail as well, or the operating system may use a slightly
different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly supported.
The most portable form that should be preferred over the others whenever possible is as follows. It allocates some
memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current memory binding
policy in order to actually get the memory bound, if the OS does not provide any other way to simply allocate bound
memory without changing the policy for all allocations. That is the difference with hwloc_alloc_membind(), which will
never change the current memory binding policy.

hwloc_alloc_membind_policy (topology, size, set,
HWLOC_MEMBIND_BIND, O0);

Each hwloc memory binding function takes a bitmap argument that is a CPU set by default, or a NUMA memory node
set if the flag HWLOC_MEMBIND_BYNODESET is specified. See Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
and The bitmap API for a discussion of CPU sets and NUMA memory node sets. It is also possible to convert between
CPU set and node set using hwloc_cpuset_to_nodeset() or hwloc_cpuset_from_nodeset().

Generated by Doxygen

114 Topic Documentation

Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by nodeset should therefore be
preferred whenever possible.

See also

Some example codes are available under doc/examples/ in the source tree.

Note
On some operating systems, memory binding affects the CPU binding; see HWLOC_MEMBIND_NOCPUBIND

23.11.2 Enumeration Type Documentation
23.11.2.1 hwloc_membind_flags_t

enum hwloc_membind_flags_t

Memory binding flags.

These flags can be used to refine the binding policy. All flags can be logically OR'ed together with the exception of
HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD; these two flags are mutually exclusive.

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about the actual mem-
ory binding support in the currently used operating system. See the "Detailed Description" section of Memory binding
for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_PROCESS | Set policy for all threads of the specified (possibly multithreaded) process.
This flag is mutually exclusive with HWLOC_MEMBIND_THREAD.

HWLOC_MEMBIND_THREAD | Set policy for a specific thread of the current process. This flag is mutually
exclusive with HWLOC_MEMBIND_PROCESS.
HWLOC_MEMBIND_STRICT | Request strict binding from the OS. The function will fail if the binding can
not be guaranteed / completely enforced.

This flag has slightly different meanings depending on which function it is
used with.

HWLOC_MEMBIND_MIGRATE | Migrate existing allocated memory. If the memory cannot be migrated and
the HWLOC_MEMBIND_STRICT flag is passed, an error will be returned.

HWLOC_MEMBIND_NOCPUBIND | Avoid any effect on CPU binding. On some operating systems, some
underlying memory binding functions also bind the application to the
corresponding CPU(s). Using this flag will cause hwloc to avoid using OS
functions that could potentially affect CPU bindings. Note, however, that
using NOCPUBIND may reduce hwloc's overall memory binding support.
Specifically: some of hwloc's memory binding functions may fail with errno
set to ENOSYS when used with NOCPUBIND.
HWLOC_MEMBIND_BYNODESET | Consider the bitmap argument as a nodeset. The bitmap argument is
considered a nodeset if this flag is given, or a cpuset otherwise by default.
Memory binding by CPU set cannot work for CPU-less NUMA memory
nodes. Binding by nodeset should therefore be preferred whenever possible.

23.11.2.2 hwloc_membind_policy_t

enum hwloc_membind_policy_t

Memory binding policy.

These constants can be used to choose the binding policy. Only one policy can be used at a time (i.e., the values cannot
be OR'ed together).

Generated by Doxygen

23.11 Memory binding

115

Not all systems support all kinds of binding. hwloc_topology_get support() may be used to query about the actual
memory binding policy support in the currently used operating system. See the "Detailed Description” section of
Memory binding for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_DEFAULT

Reset the memory allocation policy to the system default.
Depending on the operating system, this may correspond to
HWLOC_MEMBIND_FIRSTTOUCH (Linux, FreeBSD), or
HWLOC_MEMBIND_BIND (AIX, HP-UX, Solaris, Windows).
This policy is never returned by get membind functions. The
nodeset argument is ignored.

HWLOC_MEMBIND_FIRSTTOUCH

Allocate each memory page individually on the local NUMA
node of the thread that touches it. The given nodeset should
usually be hwloc_topology_get_topology_nodeset() so that the
touching thread may run and allocate on any node in the
system.

On AIX, if the nodeset is smaller, pages are allocated locally (if
the local node is in the nodeset) or from a random non-local
node (otherwise).

HWLOC_MEMBIND_BIND

Allocate memory on the specified nodes. The actual behavior
may slightly vary between operating systems, especially when
(some of) the requested nodes are full. On Linux, by default,
the MPOL_PREFERRED_MANY (or MPOL_PREFERRED)
policy is used. However, if the hwloc strict flag is also given,
the Linux MPOL_BIND policy is rather used.

HWLOC_MEMBIND_INTERLEAVE

Allocate memory on the given nodes in an interleaved /
round-robin manner. The precise layout of the memory across
multiple NUMA nodes is OS/system specific. Interleaving can
be useful when threads distributed across the specified NUMA
nodes will all be accessing the whole memory range
concurrently, since the interleave will then balance the memory
references.

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE

Allocate memory on the given nodes in an interleaved /
weighted manner. The precise layout of the memory across
multiple NUMA nodes is OS/system specific. Weighted
interleaving can be useful when threads distributed across the
specified NUMA nodes with different bandwidth capabilities
will all be accessing the whole memory range concurrently,
since the interleave will then balance the memory references.

HWLOC_MEMBIND_NEXTTOUCH

For each page bound with this policy, by next time it is touched
(and next time only), it is moved from its current location to the
local NUMA node of the thread where the memory reference
occurred (if it needs to be moved at all).

HWLOC_MEMBIND_MIXED

Returned by get_membind() functions when multiple threads
or parts of a memory area have differing memory binding
policies. Also returned when binding is unknown because
binding hooks are empty when the topology is loaded from
XML without HWLOC_THISSYSTEM=1, etc.

Generated by Doxygen

116 Topic Documentation

23.11.3 Function Documentation
23.11.3.1 hwloc_alloc()

void % hwloc_alloc (
hwloc_topology_t topology,
size_t len)
Allocate some memory.
This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

Returns

a pointer to the allocated area, or NULL on error.

Note

The allocated memory should be freed with hwloc_free().

23.11.3.2 hwloc_alloc_membind()

void * hwloc_alloc_membind (
hwloc_topology_t topology,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Allocate some memory on NUMA memory nodes specified by set.

Returns

a pointer to the allocated area.

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to ENOMEM if the memory allocation failed even before trying to bind.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
Note

The allocated memory should be freed with hwloc_free().

23.11.3.3 hwloc_alloc_membind_policy()

void * hwloc_alloc_membind_policy (

hwloc_topology_t topology,

size_t len,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags) [inline]
Allocate some memory on NUMA memory nodes specified by set.
First, try to allocate properly with hwloc_alloc_membind(). On failure, the current process or thread memory binding
policy is changed with hwloc_set_membind() before allocating memory. Thus this function works in more cases, at the
expense of changing the current state (possibly affecting future allocations that would not specify any policy).
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

a pointer to the allocated area, or NULL on error.

Generated by Doxygen

23.11 Memory binding 117

23.11.3.4 hwloc_free()

int hwloc_free (
hwloc_topology_t topology,
void x addr,
size_t len)
Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

Returns

0 on success, -1 on error.

23.11.3.5 hwloc_get_area_membind()

int hwloc_get_area_membind (

hwloc_topology_t topology,

const void * addr,

size_t len,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr, 1en).
The bitmap set (previously allocated by the caller) is filled with the memory area binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1ags passed in and the memory binding policies and nodesets of the pages in the address range.
If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same memory
binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical across all pages,
the set and policy are returned in set and policy, respectively.
If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in the address range
is calculated. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy is set to
HWLOC_MEMBIND_MIXED.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success.
-1 with errno set to EINVAL if 1en is 0.

23.11.3.6 hwloc_get_area_memlocation()

int hwloc_get_area_memlocation (
hwloc_topology_t topology,
const void * addr,
size_t len,
hwloc_bitmap_t set,
int flags)
Get the NUMA nodes where memory identified by (addzr, 1en) is physically allocated.
The bitmap set (previously allocated by the caller) is filled according to the NUMA nodes where the memory area
pages are physically allocated. If no page is actually allocated yet, set may be empty.
If pages spread to multiple nodes, it is not specified whether they spread equitably, or whether most of them are on a
single node, etc.
The operating system may move memory pages from one processor to another at any time according to their binding,
so this function may return something that is already outdated.
If HWLOC_MEMBIND_BYNODESET is specified in f1ags, set is considered a nodeset. Otherwise it's a cpuset.
If lenis 0, set is emptied.

Generated by Doxygen

118 Topic Documentation

Returns

0 on success, -1 on error.

23.11.3.7 hwloc_get_membind()

int hwloc_get_membind (

hwloc_topology_t topology,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the current process or thread.
The bitmap set (previously allocated by the caller) is filled with the process or thread memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the current process. Passing HWLOC_MEMBIND_THREAD specifies that the query target is the
current policy and nodeset for only the thread invoking this function.
If neither of these flags are passed (which is the most portable method), the process is assumed to be single threaded.
This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are
available.
HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCESS is also specified. In this case,
hwloc will check the default memory policies and nodesets for all threads in the process. If they are not identical, -1 is
returned and errno is set to EXDEV. If they are identical, the values are returned in set and policy.
Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is not specified), the de-
fault set from each thread is logically OR'ed together. If all threads' default policies are the same, policy is set to that
policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.
In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD
is specified), there is only one set and policy; they are returned in set and policy, respectively.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success, -1 on error.

23.11.3.8 hwloc_get_proc_membind()

int hwloc_get_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the specified process.
The bitmap set (previously allocated by the caller) is filled with the process memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for
all the threads in the specified process. If HWLOC_MEMBIND_PROCESS is not specified (which is the most portable
method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or
thread-based OS functions, depending on which are available.
Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.
If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all threads in
the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the values
are returned in set and policy.

Generated by Doxygen

23.11 Memory binding 119

Otherwise, set is set to the logical OR of all threads' default set. If all threads' default policies are the same, policy
is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

23.11.3.9 hwloc_set_area_membind()

int hwloc_set_area_membind (
hwloc_topology_t topology,
const void *x addr,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success orif lenis 0.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

23.11.3.10 hwloc_set_membind()

int hwloc_set_membind (

hwloc_topology_t topology,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) specified by set.
If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is as-
sumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

Generated by Doxygen

120 Topic Documentation

23.11.3.11 hwloc_set_proc_membind()

int hwloc_set_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

23.12 Changing the Source of Topology Discovery

Enumerations

» enum hwloc_topology_components_flag_e { HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST }

Functions

* int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)

« int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char xrestrict description)

« int hwloc_topology_set_xml (hwloc_topology_t restrict topology, const char xrestrict xmlpath)

« int hwloc_topology_set_xmlbuffer (hwloc_topology_t restrict topology, const char xrestrict buffer, int size)

+ int hwloc_topology_set_components (hwloc_topology_t restrict topology, unsigned long flags, const char xrestrict
name)

23.12.1 Detailed Description

These functions must be called between hwloc_topology_init() and hwloc_topology_load(). Otherwise, they will return
-1 with errno set to EBUSY.

If none of the functions below is called, the default is to detect all the objects of the machine that the caller is allowed to
access.

This default behavior may also be modified through environment variables if the application did not modify it already.
Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if hwloc_topology_set_xmi()
had been called. Setting HWLOC_SYNTHETIC enforces a synthetic topology as if hwloc_topology_set_synthetic() had
been called.

Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology _is_thissystem().

23.12.2 Enumeration Type Documentation

23.12.2.1 hwloc_topology_components_flag_e

enum hwloc_topology_components_flag_e
Flags to be passed to hwloc_topology_set_components()

Generated by Doxygen

23.12 Changing the Source of Topology Discovery 121

Enumerator

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST | Blacklist the target component from being used.

23.12.3 Function Documentation
23.12.3.1 hwloc_topology_set_components()

int hwloc_topology_set_components (
hwloc_topology_t restrict topology,
unsigned long flags,
const char *restrict name)
Prevent a discovery component from being used for a topology.
name is the name of the discovery component that should not be used when loading topology t opology. The name
is a string such as "cuda".
For components with multiple phases, it may also be suffixed with the name of a phase, for instance "linux:io".
flags should be HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST.
This may be used to avoid expensive parts of the discovery process. For instance, CUDA-specific discovery may be
expensive and unneeded while generic 1/O discovery could still be useful.

Returns

0 on success.

-1 on error, for instance if flags are invalid.

23.12.3.2 hwloc_topology_set_pid()

int hwloc_topology_set_pid (

hwloc_topology_t restrict topology,

hwloc_pid_t pid)
Change which process the topology is viewed from.
On some systems, processes may have different views of the machine, for instance the set of allowed CPUs. By default,
hwloc exposes the view from the current process. Calling hwloc_topology_set_pid() permits to make it expose the
topology of the machine from the point of view of another process.

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.
-1 is returned and errno is set to ENOSY S on platforms that do not support this feature.

The PID will not actually be used until hwloc_topology_load(). If the corresponding process exits in the meantime,
hwloc will ignore the PID. If another process reuses the PID, the view of that process will be used.

Returns

0 on success, -1 on error.

23.12.3.3 hwloc_topology_set_synthetic()

int hwloc_topology_set_synthetic (
hwloc_topology_t restrict topology,
const char *restrict description)

Enable synthetic topology.

Generated by Doxygen

122 Topic Documentation

Gather topology information from the given description, a space-separated string of <type:number> describing
the object type and arity at each level. All types may be omitted (space-separated string of numbers) so that hwloc
chooses all types according to usual topologies. See also the Synthetic topologies.

Setting the environment variable HWLOC_SYNTHETIC may also result in this behavior.

If description was properly parsed and describes a valid topology configuration, this function returns 0. Otherwise
-1 is returned and errno is set to EINVAL.

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.
-1 with errno set to EINVAL if the description was invalid.

Note

For convenience, this backend provides empty binding hooks which just return success.

On success, the synthetic component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

23.12.3.4 hwloc_topology_set_xml()

int hwloc_topology_set_xml (

hwloc_topology_t restrict topology,

const char xrestrict xmlpath)
Enable XML-file based topology.
Gather topology information from the XML file given at xmlpath. Setting the environment variable HWLOC_«
XMLFILE may also result in this behavior. This file may have been generated earlier with hwloc_topology_export_xml()
in hwloc/export.h, or Istopo file.xml.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.

-1 with errno set to EINVAL on failure to read the XML file.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually
call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded
file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology_load()
depending on the XML library used by hwloc.

23.12.3.5 hwloc_topology_set_xmlbuffer()

int hwloc_topology_set_xmlbuffer (
hwloc_topology_t restrict topology,
const char xrestrict buffer,

int size)

Generated by Doxygen

23.13 Topology Detection Configuration and Query 123

Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xml()).

Gather topology information from the XML memory buffer given at buffer and of length size (including an ending
\ 0). This buffer may have been filled earlier with hwloc_topology_export_xmlbuffer() in hwloc/export.h.

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.

-1 with errno set to EINVAL on failure to read the XML buffer.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually
call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded
file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology_load()
depending on the XML library used by hwloc.

23.13 Topology Detection Configuration and Query

Data Structures

« struct hwloc_topology_discovery_support
« struct hwloc_topology_cpubind_support
« struct hwloc_topology membind_support
« struct hwloc_topology_misc_support

« struct hwloc_topology_support

Enumerations

» enum hwloc_topology_flags_e {
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED , HWLOC_TOPOLOGY_FLAG_IS THISSYSTEM ,
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES , HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
= (1UL<<3),
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING = (1UL<<4) , HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEME
= (1UL<<5), HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING = (1UL<<6) , HWLOC_TOPOLOGY_FLAG_NO_DISTAN
= (1UL<<7),
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS = (1UL<<8) , HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS =
(1UL<<9) }

« enum hwloc_type_filter_e { HWLOC_TYPE_FILTER_KEEP_ALL , HWLOC_TYPE_FILTER_KEEP_NONE |,
HWLOC_TYPE_FILTER_KEEP_STRUCTURE , HWLOC_TYPE_FILTER_KEEP_IMPORTANT }

Functions

« int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

« unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

« int hwloc_topology_is_thissystem (hwloc_topology t restrict topology)

« const struct hwloc_topology_support * hwloc_topology_get_support (hwloc_topology_t restrict topology)

« int hwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
filter)

Generated by Doxygen

124 Topic Documentation

« int hwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
«filter)

« int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set _cache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_icache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_io_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

+ void hwloc_topology_set_userdata (hwloc_topology_t topology, const void xuserdata)

+ void * hwloc_topology_get_userdata (hwloc_topology_t topology)

23.13.1 Detailed Description
Several functions can optionally be called between hwloc_topology_init() and hwloc_topology load() to configure how

the detection should be performed, e.g. to ignore some objects types, define a synthetic topology, etc.

23.13.2 Enumeration Type Documentation
23.13.2.1 hwloc_topology_flags_e

enum hwloc_topology_flags_e
Flags to be set onto a topology context before load.
Flags should be given to hwloc_topology_set_flags(). They may also be returned by hwloc_topology_get_flags().

Enumerator

HWLOC_TOPOLOGY_FLAG_INCLUDE_+ | Detect the whole system, ignore reservations, include
DISALLOWED | disallowed objects. Gather all online resources, even if
some were disabled by the administrator. For instance,
ignore Linux Cgroup/Cpusets and gather all processors
and memory nodes. However offline PUs and NUMA
nodes are still ignored.
When this flag is not set, PUs and NUMA nodes that are
disallowed are not added to the topology. Parent objects
(package, core, cache, etc.) are added only if some of
their children are allowed. All existing PUs and NUMA
nodes in the topology are allowed.
hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset() are equal to the
root object cpuset and nodeset.
When this flag is set, the actual sets of allowed PUs and
NUMA nodes are given by
hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset(). They may be
smaller than the root object cpuset and nodeset.
If the current topology is exported to XML and
reimported later, this flag should be set again in the
reimported topology so that disallowed resources are
reimported as well.

Generated by Doxygen

23.13 Topology Detection Configuration and Query

125

Enumerator

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM

Assume that the selected backend provides the
topology for the system on which we are running. This
forces hwloc_topology_is_thissystem() to return 1, i.e.
makes hwloc assume that the selected backend
provides the topology for the system on which we are
running, even if it is not the OS-specific backend but the
XML backend for instance. This means making the
binding functions actually call the OS-specific system
calls and really do binding, while the XML backend
would otherwise provide empty hooks just returning
success.

Setting the environment variable
HWLOC_THISSYSTEM may also result in the same
behavior.

This can be used for efficiency reasons to first detect
the topology once, save it to an XML file, and quickly
reload it later through the XML backend, but still having
binding functions actually do bind.

HWLOC_TOPOLOGY_FLAG_THISSYSTEM_«
ALLOWED_RESOURCES

Get the set of allowed resources from the local
operating system even if the topology was loaded from
XML or synthetic description. If the topology was loaded
from XML or from a synthetic string, restrict it by
applying the current process restrictions such as Linux
Cgroup/Cpuset.

This is useful when the topology is not loaded directly
from the local machine (e.g. for performance reason)
and it comes with all resources, while the running
process is restricted to only parts of the machine.

This flag is ignored unless
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM is also
set since the loaded topology must match the underlying
machine where restrictions will be gathered from.
Setting the environment variable
HWLOC_THISSYSTEM_ALLOWED_RESOURCES
would result in the same behavior.

Generated by Doxygen

126

Topic Documentation

Enumerator

HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT

Import support from the imported topology. When
importing a XML topology from a remote machine,
binding is disabled by default (see
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM). This
disabling is also marked by putting zeroes in the
corresponding supported feature bits reported by
hwloc_topology_get_support().

The flag
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
actually imports support bits from the remote machine.
It also sets the flag imported_support in the struct
hwloc_topology_misc_support array. If the imported
XML did not contain any support information (exporter
hwloc is too old), this flag is not set.

Note that these supported features are only relevant for
the hwloc installation that actually exported the XML
topology (it may vary with the operating system, or with
how hwloc was compiled).

Note that setting this flag however does not enable
binding for the locally imported hwloc topology, it only
reports what the remote hwloc and machine support.

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_«
CPUBINDING

Do not consider resources outside of the process CPU
binding. If the binding of the process is limited to a
subset of cores, ignore the other cores during discovery.
The resulting topology is identical to what a call to
hwloc_topology_restrict() would generate, but this flag
also prevents hwloc from ever touching other resources
during the discovery.

This flag especially tells the x86 backend to never
temporarily rebind a thread on any excluded core. This
is useful on Windows because such temporary
rebinding can change the process binding. Another
use-case is to avoid cores that would not be able to
perform the hwloc discovery anytime soon because they
are busy executing some high-priority real-time tasks.

If process CPU binding is not supported, the thread
CPU binding is considered instead if supported, or the
flag is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM as well
since binding support is required.

Generated by Doxygen

23.13 Topology Detection Configuration and Query

127

Enumerator

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_«
MEMBINDING

Do not consider resources outside of the process
memory binding. If the binding of the process is limited
to a subset of NUMA nodes, ignore the other NUMA
nodes during discovery.

The resulting topology is identical to what a call to
hwloc_topology_restrict() would generate, but this flag
also prevents hwloc from ever touching other resources
during the discovery.

This flag is meant to be used together with
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBIND|
when both cores and NUMA nodes should be ignored
outside of the process binding.

If process memory binding is not supported, the thread
memory binding is considered instead if supported, or
the flag is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM as well
since binding support is required.

ING

HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_+
BINDING

Do not ever modify the process or thread binding during
discovery. This flag disables all hwloc discovery steps
that require a change of the process or thread binding.
This currently only affects the x86 backend which gets
entirely disabled.

This is useful when hwloc_topology_load() is called
while the application also creates additional threads or
modifies the binding.

This flag is also a strict way to make sure the process
binding will not change to due thread binding changes
on Windows (see
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBIND|

ING).

HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

Ignore distances. Ignore distance information from the
operating systems (and from XML) and hence do not
use distances for grouping.

HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

Ignore memory attributes and tiers. Ignore memory
attribues from the operating systems (and from XML)
Hence also do not try to build memory tiers.

HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS

Ignore CPU Kinds. Ignore CPU kind information from
the operating systems (and from XML).

23.13.2.2 hwloc_type_filter_e

enum hwloc_type_filter_e

Type filtering flags.

By default, most objects are kept (HWLOC_TYPE_FILTER_KEEP_ALL). Instruction caches, memory-side caches, 1/O
and Misc objects are ignored by default (HWLOC_TYPE_FILTER_KEEP_NONE). Group levels are ignored unless they
bring structure (HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

Note that group objects are also ignored individually (without the entire level) when they do not bring structure.

Generated by Doxygen

128

Topic Documentation

Enumerator

HWLOC_TYPE_FILTER_KEEP_ALL

Keep all objects of this type. Cannot be set for
HWLOC_OBJ_GROUP (groups are designed only to add more
structure to the topology).

HWLOC_TYPE_FILTER_KEEP_NONE

Ignore all objects of this type. The bottom-level type
HWLOC_OBJ_PU, the HWLOC_OBJ_NUMANODE type, and
the top-level type HWLOC_OBJ_MACHINE may not be ignored.

HWLOC_TYPE_FILTER_KEEP_STRUCTURE

Only ignore objects if their entire level does not bring any
structure. Keep the entire level of objects if at least one of these
objects adds structure to the topology. An object brings structure
when it has multiple children and it is not the only child of its
parent.

If all objects in the level are the only child of their parent, and if
none of them has multiple children, the entire level is removed.
Cannot be set for I1/0 and Misc objects since the topology
structure does not matter there.

HWLOC_TYPE_FILTER_KEEP_IMPORTANT

Only keep likely-important objects of the given type. It is only
useful for I/O object types. For HWLOC_OBJ_PCI_DEVICE and
HWLOC_OBJ_OS_DEVICE, it means that only objects of
major/common kinds are kept (storage, network, OpenFabrics,
CUDA, OpenCL, RSMI, NVML, and displays). Also, only OS
devices directly attached on PCI (e.g. no USB) are reported. For
HWLOC_OBJ_BRIDGE, it means that bridges are kept only if
they have children.

This flag equivalent to HWLOC_TYPE_FILTER_KEEP_ALL for
Normal, Memory and Misc types since they are likely important.

23.13.3 Function Documentation
23.13.3.1 hwloc_topology_get flags()

unsigned long hwloc_topology_get_flags (
hwloc_topology_t topology)
Get OR'ed flags of a topology.

Get the OR'ed set of hwloc_topology_flags_e of a topology.
If hwloc_topology_set_flags() was not called earlier, no flags are set (0 is returned).

Returns

the flags previously set with hwloc_topology_set_flags().

Note

This function may also be called after hwloc_topology_load().

23.13.3.2 hwloc_topology_get_support()

const struct hwloc_topology_support * hwloc_topology_get_support (

hwloc_topology_t restrict topology)

Retrieve the topology support.

Each flag indicates whether a feature is supported. If set to 0, the feature is not supported. If set to 1, the feature is
supported, but the corresponding call may still fail in some corner cases.

Generated by Doxygen

23.13 Topology Detection Configuration and Query 129

These features are also listed by hwloc-info --support

The reported features are what the current topology supports on the current machine. If the topology was ex-
ported to XML from another machine and later imported here, support still describes what is supported for
this imported topology after import. By default, binding will be reported as unsupported in this case (see
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM).

Topology flag HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT may be used to report the supported features of the
original remote machine instead. If it was successfully imported, imported_support will be set in the struct
hwloc_topology_misc_support array.

Returns

A pointer to a support structure.

Note

The function cannot return NULL.
The returned pointer should not be freed, it belongs to the hwloc library.

This function may be called before or after hwloc_topology_load() but the support structure only contains valid
information after.

23.13.3.3 hwloc_topology_get_type_filter()

int hwloc_topology_get_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e *x filter)

Get the current filtering for the given object type.
Returns

0 on success, -1 on error.

23.13.3.4 hwloc_topology_get_userdata()

void * hwloc_topology_get_userdata (
hwloc_topology_t topology)
Retrieve the topology-specific userdata pointer.
Retrieve the application-given private data pointer that was previously set with hwloc_topology_set_userdata().

Returns

A pointer to the private-data if any.
NULL if no private-data was previoulsy set.

23.13.3.5 hwloc_topology_is_thissystem()

int hwloc_topology_is_thissystem (
hwloc_topology_t restrict topology)
Does the topology context come from this system?

Returns

1 if this topology context was built using the system running this program.

0 instead (for instance if using another file-system root, a XML topology file, or a synthetic topology).
Note

This function may also be called after hwloc_topology_load().

Generated by Doxygen

130

Topic Documentation

23.13.3.6 hwloc_topology_set_all_types_filter()

int hwloc_topology_set_all_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all object types.

If some types do not support this filtering, they are silently ignored.

Returns

0 on success, -1 on error.

23.13.3.7 hwloc_topology_set_cache_types_filter()

int hwloc_topology_set_cache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all CPU cache object types.

Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

23.13.3.8 hwloc_topology_set_flags()

int hwloc_topology_set_flags (
hwloc_topology_t topology,
unsigned long flags)

Set OR'ed flags to non-yet-loaded topology.

Set a OR'ed set of hwloc_topology_flags_e onto a topology that was not yet loaded.

If this function is called multiple times, the last invocation will erase and replace the set of flags that was previously set.

By default, no flags are set (0).

The flags set in a topology may be retrieved with hwloc_topology get_flags().

Returns

0 on success.

-1 on error, for instance if flags are invalid.

23.13.3.9 hwloc_topology_set_icache_types_filter()

int hwloc_topology_set_icache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)
Set the filtering for all CPU instruction cache object types.

Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

Generated by Doxygen

23.14 Modifying a loaded Topology 131

23.13.3.10 hwloc_topology_set_io_types_filter()

int hwloc_topology_set_io_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all /O object types.

Returns

0 on success, -1 on error.

23.13.3.11 hwloc_topology_set_type_filter()

int hwloc_topology_set_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e filter)

Set the filtering for the given object type.

Returns

0 on success, -1 on error.

23.13.3.12 hwloc_topology_set_userdata()

void hwloc_topology_set_userdata (
hwloc_topology_t topology,
const void *x userdata)
Set the topology-specific userdata pointer.
Each topology may store one application-given private data pointer. It is initialized to NULL. hwloc will never modify it.
Use it as you wish, after hwloc_topology_init() and until hwloc_topolog_destroy().
This pointer is not exported to XML.

23.14 Modifying a loaded Topology

Enumerations

» enum hwloc_restrict_flags_e {
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS , HWLOC_RESTRICT_FLAG_BYNODESET = (1UL<<3) ,
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS , HWLOC RESTRICT _FLAG_ADAPT_MISC,
HWLOC_RESTRICT_FLAG_ADAPT_IO}

« enum hwloc_allow_flags_e { HWLOC_ALLOW_FLAG_ALL , HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS
, HWLOC_ALLOW_FLAG_CUSTOM }

Functions

« int hwloc_topology_restrict (hwloc_topology_t restrict topology, hwloc_const_bitmap_t set, unsigned long flags)

« int hwloc_topology_allow (hwloc_topology_t restrict topology, hwloc_const_cpuset_t cpuset, hwloc_const_nodeset_t
nodeset, unsigned long flags)

» hwloc_obj_t hwloc_topology_insert_misc_object (hwloc_topology_t topology, hwloc_obj_t parent, const char
*name)

» hwloc_obj_t hwloc_topology_alloc_group_object (hwloc_topology_t topology)

« int hwloc_topology_free_group_object (hwloc_topology_t topology, hwloc_obj_t group)

» hwloc_obj_t hwloc_topology_insert_group_object (hwloc_topology_t topology, hwloc_obj_t group)

« int hwloc_obj_add_other_obj_sets (hwloc_obj_t dst, hwloc_obj_t src)

« int hwloc_topology_refresh (hwloc_topology_t topology)

Generated by Doxygen

132

Topic Documentation

23.14.1 Detailed Description

23.14.2 Enumeration Type Documentation
23.14.2.1 hwloc_allow_flags_e

enum hwloc_allow_flags_e
Flags to be given to hwloc_topology_allow().

Enumerator

HWLOC_ALLOW FLAG ALL

Mark all objects as allowed in the topology. cpuset and
nodeset given to hwloc_topology_allow() must be NULL.

HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS

Only allow objects that are available to the current process.
The topology must have
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM so that the
set of available resources can actually be retrieved from the
operating system.

cpuset and nodeset given to hwloc_topology_allow()
must be NULL.

HWLOC_ALLOW_FLAG_CUSTOM

Allow a custom set of objects, given to
hwloc_topology_allow() as cpuset and/or nodeset
parameters.

23.14.2.2 hwloc_restrict_flags_e

enum hwloc_restrict_flags_e
Flags to be given to hwloc_topology_restrict().

Enumerator

HWLOC_RESTRICT_FLAG_REMOVE_CPULESS

Remove all objects that became CPU-less. By default, only
objects that contain no PU and no memory are removed.
This flag may not be used with
HWLOC_RESTRICT_FLAG_BYNODESET.

HWLOC_RESTRICT_FLAG_BYNODESET

Restrict by nodeset instead of CPU set. Only keep objects
whose nodeset is included or partially included in the given
set. This flag may not be used with
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS.

HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS

Remove all objects that became Memory-less. By default,
only objects that contain no PU and no memory are
removed. This flag may only be used with
HWLOC_RESTRICT_FLAG_BYNODESET.

HWLOC_RESTRICT_FLAG_ADAPT_MISC

Move Misc objects to ancestors if their parents are removed
during restriction. If this flag is not set, Misc objects are
removed when their parents are removed.

HWLOC_RESTRICT_FLAG_ADAPT_IO

Move /O objects to ancestors if their parents are removed
during restriction. If this flag is not set, /O devices and
bridges are removed when their parents are removed.

Generated by Doxygen

23.14 Modifying a loaded Topology 133

23.14.3 Function Documentation
23.14.3.1 hwloc_obj_add_other_obj_sets()

int hwloc_obj_add_other_obj_sets (

hwloc_obj_t dst,

hwloc_obj_t src)
Setup object cpusets/nodesets by OR'ing another object's sets.
For each defined cpuset or nodeset in src, allocate the corresponding set in dst and add src to it by OR'ing sets.
This function is convenient between hwloc_topology_alloc_group_object() and hwloc_topology_insert_group_object().
It builds the sets of the new Group that will be inserted as a new intermediate parent of several objects.

Returns

0 on success.
-1 with errno set to ENOMEM if some internal reallocation failed.

23.14.3.2 hwloc_topology_alloc_group_object()

hwloc_obj_t hwloc_topology_alloc_group_object (
hwloc_topology_t topology)
Allocate a Group object to insert later with hwloc_topology_insert_group_object().
This function returns a new Group object.
The caller should (at least) initialize its sets before inserting the object in the topology, see hwloc_topology_insert_group_object().
Or it may decide not to insert and just free the group object by calling hwloc_topology_free_group_object().

Returns

The allocated object on success.
NULL on error.

Note

If successfully inserted by hwloc_topology_insert_group_object(), the object will be freed when the entire topology
is freed. If insertion failed (e.g. NULL or empty CPU and node-sets), it is freed before returning the error.

23.14.3.3 hwloc_topology_allow()

int hwloc_topology_allow (
hwloc_topology_t restrict topology,
hwloc_const_cpuset_t cpuset,
hwloc_const_nodeset_t nodeset,
unsigned long flags)
Change the sets of allowed PUs and NUMA nodes in the topology.
This function only works if the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set on the topology.
It does not modify any object, it only changes the sets returned by hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset().
It is notably useful when importing a topology from another process running in a different Linux Cgroup.
flags must be set to one flag among hwloc_allow_flags_e.

Returns

0 on success, -1 on error.

Note

Removing objects from a topology should rather be performed with hwloc_topology_restrict().

Generated by Doxygen

134 Topic Documentation

23.14.3.4 hwloc_topology_free_group_object()

int hwloc_topology_free_group_object (
hwloc_topology_t topology,
hwloc_obj_t group)
Free a group object allocated with hwloc_topology_alloc_group_object().
This function is only useful if the group object was not given to hwloc_topology_insert_group_object() as planned.

Note

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

0 on success.
-1 on error, for instance if an invalid topology is given.

23.14.3.5 hwloc_topology_insert_group_object()

hwloc_obj_t hwloc_topology_insert_group_object (

hwloc_topology_t topology,

hwloc_obj_t group)
Add more structure to the topology by adding an intermediate Group.
The caller should first allocate a new Group object with hwloc_topology_alloc_group_object(). Then it must setup at
least one of its CPU or node sets to specify the final location of the Group in the topology. Then the object can be
passed to this function for actual insertion in the topology.
The main use case for this function is to group a subset of siblings among the list of children below a single parent.
For instance, if grouping 4 cores out of a 8-core socket, the logical list of cores will be reordered so that the 4 grouped
ones are consecutive. Then, if needed, a new depth is added between the parent and those children, and the Group is
inserted there. At the end, the 4 grouped cores are now children of the Group, which replaces them as a child of the
original parent.
In practice, the grouped objects are specified through cpusets and/or nodesets, for instance using hwloc_obj_add_other_obj_sets()
iteratively. Hence it is possible to group objects that are not children of the same parent, for instance some PUs below
the 4 cores in example above. However this general case may fail if the expected Group conflicts with the existing
hierarchy. For instance if each core has two PUs, it is not possible to insert a Group containing a single PU of each
core.
To specify the objects to group, either the cpuset or nodeset field (or both, if compatible) must be set to a non-empty
bitmap. The complete_cpuset or complete_nodeset may be set instead if inserting with respect to the complete topology
(including disallowed, offline or unknown objects). These sets cannot be larger than the current topology, or they would
get restricted silently. The core will setup the other sets after actual insertion.
The subtype object attribute may be defined with hwloc_obj_set_subtype() to display something else than "Group"
as the type name for this object in Istopo. Custom name-value info pairs may be added with hwloc_obj_add_info() after
insertion.
The group dont_merge attribute may be set to 1 to prevent the hwloc core from ever merging this object with another
hierarchically-identical object. This is useful when the Group itself describes an important feature that cannot be exposed
anywhere else in the hierarchy.
The group kind attribute may be set to a high value such as Oxf£f£f£fff to tell hwloc that this new Group should
always be discarded in favor of any existing Group with the same locality.

Note

Inserting a group adds some locality information to the topology, hence the existing objects may get reordered
(including PUs and NUMA nodes), and their logical indexes may change.
If the insertion fails, the input group object is freed.

If the group object should be discarded instead of inserted, it may be passed to hwloc_topology_free_group_object()
instead.

Generated by Doxygen

23.14 Modifying a loaded Topology 135

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

The inserted object if it was properly inserted.

An existing object if the Group was merged or discarded because the topology already contained an object at the
same location (the Group did not add any hierarchy information).

NULL if the insertion failed because of conflicting sets in topology tree.
NULL if Group objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

NULL if the object was discarded because no set was initialized in the Group before insert, or all of them were
empty.

23.14.3.6 hwloc_topology_insert_misc_object()

hwloc_obj_t hwloc_topology_insert_misc_object (

hwloc_topology_t topology,

hwloc_obj_t parent,

const char * name)
Add a MISC object as a leaf of the topology.
A new MISC object will be created and inserted into the topology at the position given by parent. It is appended to
the list of existing Misc children, without ever adding any intermediate hierarchy level. This is useful for annotating the
topology without actually changing the hierarchy.
name is supposed to be unique across all Misc objects in the topology. It will be duplicated to setup the new object
attributes.
The new leaf object will not have any cpuset.
The subt ype object attribute may be defined with hwloc_obj_set_subtype() after successful insertion.

Returns

the newly-created object
NULL on error.
NULL if Misc objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

Note

If name contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

23.14.3.7 hwloc_topology_refresh()

int hwloc_topology_refresh (

hwloc_topology_t topology)
Refresh internal structures after topology modification.
Modifying the topology (by restricting, adding objects, modifying structures such as distances or memory attributes, etc.)
may cause some internal caches to become invalid. These caches are automatically refreshed when accessed but this
refreshing is not thread-safe.
This function is not thread-safe either, but it is a good way to end a non-thread-safe phase of topology modification.
Once this refresh is done, multiple threads may concurrently consult the topology, objects, distances, attributes, etc.
See also Thread Safety

Returns

0 on success.

-1 on error, for instance if some internal reallocation failed.

Generated by Doxygen

136 Topic Documentation

23.14.3.8 hwloc_topology_restrict()

int hwloc_topology_restrict (

hwloc_topology_t restrict topology,

hwloc_const_bitmap_t set,

unsigned long flags)
Restrict the topology to the given CPU set or nodeset.
Topology topology is modified so as to remove all objects that are not included (or partially included) in the CPU set
set. All objects CPU and node sets are restricted accordingly.
By default, set is a CPU set. It means that the set of PUs in the topology is restricted. Once some PUs got removed,
their parents may also get removed recursively if they became child-less.
If HWLOC_RESTRICT_FLAG_BYNODESET is passed in flags, set is considered a nodeset instead of a CPU set.
It means that the set of NUMA nodes in the topology is restricted (instead of PUs). Once some NUMA nodes got
removed, their parents may also get removed recursively if they became child-less.
flags is a OR'ed set of hwloc_restrict_flags_e.

Note
Restricting the topology removes some locality information, hence the remaining objects may get reordered (in-
cluding PUs and NUMA nodes), and their logical indexes may change.

This call may not be reverted by restricting back to a larger set. Once dropped during restriction, objects may not
be brought back, except by loading another topology with hwloc_topology_load().

Returns

0 on success.
-1 with errno set to EINVAL if the input set is invalid. The topology is not modified in this case.

-1 with errno set to ENOMEM on failure to allocate internal data. The topology is reinitialized in this case. It should
be either destroyed with hwloc_topology_destroy() or configured and loaded again.

23.15 Kinds of object Type

Functions

« int hwloc_obj_type_is_normal (hwloc_obj_type_t type)
« int hwloc_obj_type_is_io (hwloc_obj_type_t type)

* int hwloc_obj_type_is_memory (hwloc_obj_type_t type)
« int hwloc_obj_type_is_cache (hwloc_obj_type_t type)

« int hwloc_obj_type_is_dcache (hwloc_obj_type_t type)
« int hwloc_obj_type_is_icache (hwloc_obj_type_t type)

23.15.1 Detailed Description

Each object type is either Normal (i.e. hwloc_obj_type_is_normal() returns 1), or Memory (i.e. hwloc_obj_type_is_memory()
returns 1) or I/O (i.e. hwloc_obj_type_is_io() returns 1) or Misc (i.e. equal to HWLOC_OBJ_MISC). It cannot be of more
than one of these kinds.

See also Object Kind in Terms and Definitions.

23.15.2 Function Documentation
23.15.2.1 hwloc_obj_type_is_cache()

int hwloc_obj_type_is_cache (

hwloc_obj_type_t type)
Check whether an object type is a CPU Cache (Data, Unified or Instruction).
Memory-side caches are not CPU caches.

Generated by Doxygen

23.15 Kinds of object Type 137

Returns

1 if an object of type t ype is a Cache, 0 otherwise.

23.15.2.2 hwloc_obj_type_is_dcache()

int hwloc_obj_type_is_dcache (

hwloc_obj_type_t type)
Check whether an object type is a CPU Data or Unified Cache.
Memory-side caches are not CPU caches.

Returns

1 if an object of type type is a CPU Data or Unified Cache, 0 otherwise.

23.15.2.3 hwloc_obj_type_is_icache()

int hwloc_obj_type_is_icache (

hwloc_obij_type_t type)
Check whether an object type is a CPU Instruction Cache,.
Memory-side caches are not CPU caches.

Returns

1 if an object of type t ype is a CPU Instruction Cache, 0 otherwise.

23.15.2.4 hwloc_obj_type_is_io()

int hwloc_obj_type_is_io (
hwloc_obj_type_t type)
Check whether an object type is I/0.
I/O objects are objects attached to their parents in the 1/O children list. This current includes Bridges, PCl and OS
devices.

Returns

1 if an object of type t ype is a I/O object, 0 otherwise.

23.15.2.5 hwloc_obj_type_is_memory()

int hwloc_obj_type_is_memory (
hwloc_obj_type_t type)
Check whether an object type is Memory.
Memory objects are objects attached to their parents in the Memory children list. This current includes NUMA nodes
and Memory-side caches.

Returns

1 if an object of type t ype is a Memory object, 0 otherwise.

23.15.2.6 hwloc_obj_type_is_normal()

int hwloc_obj_type_is_normal (
hwloc_obj_type_t type)
Check whether an object type is Normal.
Normal objects are objects of the main CPU hierarchy (Machine, Package, Core, PU, CPU caches, etc.), but they are
not NUMA nodes, I/O devices or Misc objects.
They are attached to parent as Normal children, not as Memory, I/O or Misc children.

Generated by Doxygen

138 Topic Documentation

Returns

1 if an object of type t ype is a Normal object, 0 otherwise.

23.16 Finding Objects inside a CPU set

Functions

» hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

« int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t
xrestrict objs, int max)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology t topology, hwloc_const cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, int
depth, unsigned idx)

» hwloc_obj_t hwloc_get obj_inside_cpuset_by type (hwloc_topology t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, unsigned idx)

+ unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, int
depth)

« int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t
type)

« int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t obj)

23.16.1 Detailed Description

23.16.2 Function Documentation
23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()

hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first largest object included in the given cpuset set.

Returns
the first object that is included in set and whose parent is not.
NULL if no such object exists.

This is convenient for iterating over all largest objects within a CPU set by doing a loop getting the first largest object
and clearing its CPU set from the remaining CPU set.

23.16.2.2 hwloc_get_largest_objs_inside_cpuset()

int hwloc_get_largest_objs_inside_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_t *restrict objs,
int max)

Get the set of largest objects covering exactly a given cpuset set.

Returns

the number of objects returned in objs.
-1 if no set of objects may cover that cpuset.

Generated by Doxygen

23.16 Finding Objects inside a CPU set 139

23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()

unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth) [inline]

Return the number of objects at depth depth included in CPU set set.

Returns

the number of objects.
0 if the depth is invalid.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type()

int hwloc_get_nbobjs_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obij_type_t type) [inline]

Return the number of objects of type t ype included in CPU set set.

Returns

the number of objects.
0 if there are no objects of that type in the topology.
-1 if there are multiple levels of objects of that type, the caller should fallback to hwloc_get_nbobjs_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects of the given type do not have CPU sets (I/O objects).

23.16.2.5 hwloc_get_next_obj_inside_cpuset_by depth()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Return the next object at depth depth included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Returns

the first object at depth depth included in set if prev is NULL.
the next object at depth depth included in set if prev is not NULL.
NULL if there is no next object.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

Generated by Doxygen

140 Topic Documentation

23.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]
Return the next object of type t ype included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Returns

the first object of type t ype included in set if prev is NULL.

the next object of type t ype included in set if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

23.16.2.7 hwloc_get_obj_index_inside_cpuset()

int hwloc_get_obj_index_inside_cpuset (

hwloc_topology_t topology,

hwloc_const_cpuset_t set,

hwloc_obj_t obj) [inline]
Return the logical index among the objects included in CPU set set.
Consult all objects in the same level as ob j and inside CPU set set in the logical order, and return the index of ob j
within them. If set covers the entire topology, this is the logical index of obj. Otherwise, this is similar to a logical
index within the part of the topology defined by CPU set set.

Returns

the logical index among the objects included in the set if any.

-1 if the object is not included in the set.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if obj does not have CPU sets (I/O objects).

23.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
unsigned idx) [inline]

Return the (logically) 1 dx -th object at depth depth included in CPU set set.

Generated by Doxygen

23.17 Finding Objects covering at least CPU set 141

Returns

the object if any, NULL otherwise.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

23.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
unsigned idx) [inline]

Return the idx -th object of type t ype included in CPU set set.
Returns

the object if any.

NULL if there is no such object.

NULL if there is no depth for given type.

NULL if there are multiple depths for given type, the caller should fallback to hwloc_get_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

23.17 Finding Objects covering at least CPU set

Functions

* hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology_t topology, hwloc_const cpuset t set,
hwloc_obj_t parent)

» hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t
set, hwloc_obj_type_t type, hwloc_obj_t prev)

23.17.1 Detailed Description

23.17.2 Function Documentation
23.17.2.1 hwloc_get_child_covering_cpuset()

hwloc_obj_t hwloc_get_child_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_t parent) [inline]
Get the child covering at least CPU set set.

Generated by Doxygen

142 Topic Documentation

Returns

the child that covers the set entirely.

NULL if no child matches or if set is empty.

Note

This function cannot work if parent does not have a CPU set (I/O or Misc objects).

23.17.2.2 hwloc_get_next_obj_covering_cpuset_by_ depth()

hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Iterate through same-depth objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object covering at least
another part of set.

Returns

the first object at depth depth covering at least part of CPU set set if object prev is NULL.
the next one if prev is not NULL.

NULL if there is no next object.

Note

This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

23.17.2.3 hwloc_get_next_obj_covering_cpuset_by type()

hwloc_obj_t hwloc_get_next_obj_covering cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]
Iterate through same-type objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object of type t ype covering
at least another part of set.

Returns

the first object of type t ype covering at least part of CPU set set if object prev is NULL.

the next one if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_covering_cpuset_by_depth().

Note

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

Generated by Doxygen

23.18 Looking at Ancestor and Child Objects

143

23.17.2.4 hwloc_get_obj_covering_cpuset()

hwloc_obj_t hwloc_get_obj_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]
Get the lowest object covering at least CPU set set.

Returns

the lowest object covering the set entirely.
NULL if no object matches or if set is empty.

23.18 Looking at Ancestor and Child Objects

Functions

» hwloc_obj_t hwloc_get_ancestor_obj_ by depth (hwloc_topology_t topology, int depth, hwloc_obj_t obj)

» hwloc_obj_t hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, hwloc_obj_t

obj)

» hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology, hwloc_obj_t obj1, hwloc_obj_t obj2)

« int hwloc_obj_is_in_subtree (hwloc_topology_t topology, hwloc_obj_t obj, hwloc_obj_t subtree_root)
» hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology, hwloc_obj_t parent, hwloc_obj_t prev)

23.18.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches

than its peers.

23.18.2 Function Documentation
23.18.2.1 hwloc_get_ancestor_obj_by_depth()

hwloc_obj_t hwloc_get_ancestor_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obj_t obj) [inline]
Returns the ancestor object of ob j at depth depth.

Returns

the ancestor if any.
NULL if no such ancestor exists.

Note

depth should not be the depth of PU or NUMA objects since they are ancestors of no objects (except Misc or
1/0). This function rather expects an intermediate level depth, such as the depth of Packages, Cores, or Caches.

23.18.2.2 hwloc_get_ancestor_obj_by_type()

hwloc_obj_t hwloc_get_ancestor_obj_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type,
hwloc_obj_t obj) I[inline]

Returns the ancestor object of ob j with type type.

Generated by Doxygen

144 Topic Documentation

Returns

the ancestor if any.
NULL if no such ancestor exists.

Note

if multiple matching ancestors exist (e.g. multiple levels of HWLOC_OBJ_GROUP) the lowest one is returned.

type should not be HWLOC_OBJ_PU or HWLOC_OBJ_NUMANODE since these objects are ances-
tors of no objects (except Misc or I/O). This function rather expects an intermediate object type, such as
HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, etc.

23.18.2.3 hwloc_get_common_ancestor_obij()

hwloc_obj_t hwloc_get_common_ancestor_obj (
hwloc_topology_t topology,
hwloc_obij_t objl,
hwloc_obj_t obj2) [inline]

Returns the common parent object to objects obj1 and obj2.

Returns

the common ancestor.

Note

This function cannot return NULL.

23.18.2.4 hwloc_get_next_child()

hwloc_obj_t hwloc_get_next_child (
hwloc_topology_t topology,
hwloc_obj_t parent,
hwloc_obj_t prev) [inline]
Return the next child.
Return the next child among the normal children list, then among the memory children list, then among the 1/O children
list, then among the Misc children list.

Returns
the first child if prev is NULL.

the next child if prev is not NULL.
NULL when there is no next child.

23.18.2.5 hwloc_obj_is_in_subtree()

int hwloc_obj_is_in_subtree (
hwloc_topology_t topology,
hwloc_obj_t obj,
hwloc_obj_t subtree_root) [inline]
Returns true if ob j is inside the subtree beginning with ancestor object subtree_root.

Returns

1 is the object is in the subtree, 0 otherwise.

Note

This function cannot work if obj and subt ree_root objects do not have CPU sets (I/O or Misc objects).

Generated by Doxygen

23.19 Looking at Cache Objects 145

23.19 Looking at Cache Objects

Functions

« int hwloc_get_cache_type_depth (hwloc_topology_t topology, unsigned cachelevel, hwloc_obj_cache_type_t ca-
chetype)

» hwloc_obj_t hwloc_get cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology, hwloc_obj_t obj)

23.19.1 Detailed Description

23.19.2 Function Documentation
23.19.2.1 hwloc_get_cache_covering_cpuset()

hwloc_obj_t hwloc_get_cache_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first data (or unified) cache covering a cpuset set.

Returns

a covering cache, or NULL if no cache matches.

23.19.2.2 hwloc_get_cache_type_depth()

int hwloc_get_cache_type_depth (

hwloc_topology_t topology,

unsigned cachelevel,

hwloc_obj_cache_type_t cachetype) [inline]
Find the depth of cache objects matching cache level and type.
Return the depth of the topology level that contains cache objects whose attributes match cachelevel and
cachetype.
This function is identical to calling hwloc_get_type_depth() with the corresponding type such as HWLOC_OBJ_L1ICACHE,
except that it may also return a Unified cache when looking for an instruction cache.

Returns

the depth of the unique matching unified cache level is returned if cachet ype is HWLOC_OBJ_CACHE_UNIFIED.

the depth of either a matching cache level or a unified cache level if cachet ype is HWLOC_OBJ_CACHE_DATA
or HWLOC_OBJ_CACHE_INSTRUCTION.

the depth of the matching level if cachetype is —1 but only one level matches.
HWLOC_TYPE_DEPTH_MULTIPLE if cachetype is —1 but multiple levels match.
HWLOC_TYPE_DEPTH_UNKNOWN if no cache level matches.

23.19.2.3 hwloc_get_shared_cache_covering_obij()

hwloc_obj_t hwloc_get_shared_cache_covering obj (
hwloc_topology_t topology,
hwloc_obj_t obj) [inline]
Get the first data (or unified) cache shared between an object and somebody else.

Returns

a shared cache.

NULL if no cache matches or if an invalid object is given (e.g. 1/0O object).

Generated by Doxygen

146 Topic Documentation

23.20 Finding objects, miscellaneous helpers

Functions

« int hwloc_bitmap_singlify_per_core (hwloc_topology_t topology, hwloc_bitmap_t cpuset, unsigned which)

» hwloc_obj_t hwloc_get_pu_obj_by_os_index (hwloc_topology_t topology, unsigned os_index)

» hwloc_obj_t hwloc_get_numanode_obj_by_os_index (hwloc_topology_t topology, unsigned os_index)

+ unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t xrestrict objs, un-
signed max)

» hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology, hwloc_obj_type_t type1, unsigned idx1,
hwloc_obj_type_t type2, unsigned idx2)

» hwloc_obj_t hwloc_get_obj_below_array_by type (hwloc_topology t topology, int nr, hwloc_obj type_ t xtypey,
unsigned *idxv)

» hwloc_obj_t hwloc_get_obj_with_same_locality (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_type_t
type, const char xsubtype, const char xnameprefix, unsigned long flags)

23.20.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

23.20.2 Function Documentation
23.20.2.1 hwloc_bitmap_singlify_per_core()

int hwloc_bitmap_singlify_per_core (
hwloc_topology_t topology,
hwloc_bitmap_t cpuset,
unsigned which)
Remove simultaneous multithreading PUs from a CPU set.
For each core in topology, if cpuset contains some PUs of that core, modify cpuset to only keep a single PU for
that core.
which specifies which PU will be kept. PU are considered in physical index order. If 0, for each core, the function
keeps the first PU that was originally set in cpuset.
If which is larger than the number of PUs in a core there were originally set in cpuset, no PU is kept for that core.

Returns

0.

Note

PUs that are not below a Core object are ignored (for instance if the topology does not contain any Core object).
None of them is removed from cpuset.

23.20.2.2 hwloc_get_closest_objs()

unsigned hwloc_get_closest_objs (
hwloc_topology_t topology,
hwloc_obj_t src,
hwloc_obj_t *restrict objs,
unsigned max)
Do a depth-first traversal of the topology to find and sort.
all objects that are at the same depth than src. Report in objs up to max physically closest ones to src.

Generated by Doxygen

23.20 Finding objects, miscellaneous helpers 147

Returns

the number of objects returned in objs.

0if srcis an I/O object.

Note

This function requires the src object to have a CPU set.

23.20.2.3 hwloc_get_numanode_obj_by os_index()

hwloc_obj_t hwloc_get_numanode_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_NUMANODE with os_index.
This function is useful for converting a nodeset into the NUMA node objects it contains. When retrieving the current
binding (e.g. with hwloc_get_membind() with HWLOC_MEMBIND_BYNODESET), one may iterate over the bits of the
resulting nodeset with hwloc_bitmap_foreach_begin(), and find the corresponding NUMA nodes with this function.

Returns

the NUMA node object, or NULL if none matches.

23.20.2.4 hwloc_get_obj_below_array_by_type()

hwloc_obj_t hwloc_get_obj_below_array_by_type (

hwloc_topology_t topology,

int nr,

hwloc_obj_type_t * typev,

unsigned * idxv) [inline]
Find an object below a chain of objects specified by types and indexes.
This is a generalized version of hwloc_get_obj_below_by_type().
Arrays t ypev and 1dxv must contain nr types and indexes.
Start from the top system object and walk the arrays t ypev and idxv. For each type and logical index couple in the
arrays, look under the previously found object to find the index-th object of the given type. Indexes are specified within
the parent, not withing the entire system.
For instance, if nr is 3, typev contains NODE, PACKAGE and CORE, and idxv contains 0, 1 and 2, return the third core
object below the second package below the first NUMA node.

Returns

a matching object if any, NULL otherwise.

Note

This function requires all these objects and the root object to have a CPU set.

23.20.2.5 hwloc_get_obj_below_by_type()

hwloc_obj_t hwloc_get_obj_below_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t typel,
unsigned idxI,
hwloc_obij_type_t type2,

unsigned idx2) [inline]

Generated by Doxygen

148 Topic Documentation

Find an object below another object, both specified by types and indexes.

Start from the top system object and find object of type typel and logical index idx1. Then look below this object
and find another object of type t ype2 and logical index 1dx2. Indexes are specified within the parent, not withing the
entire system.

For instance, if type1 is PACKAGE, idx1 is 2, type2 is CORE and idx2 is 3, return the fourth core object below the third
package.

Returns

a matching object if any, NULL otherwise.

Note

This function requires these objects to have a CPU set.

23.20.2.6 hwloc_get_obj_with_same_locality()

hwloc_obj_t hwloc_get_obj_with_same_locality (

hwloc_topology_t topology,

hwloc_obj_t src,

hwloc_obj_type_t type,

const char * subtype,

const char * nameprefix,

unsigned long flags)
Return an object of a different type with same locality.
If the source object src is a normal or memory type, this function returns an object of type t ype with same CPU and
node sets, either below or above in the hierarchy.
If the source object src is a PCl or an OS device within a PCI device, the function may either return that PCI device,
or another OS device in the same PCI parent. This may for instance be useful for converting between OS devices
such as "nvml0" or "rsmi1" used in distance structures into the the PCI device, or the CUDA or OpenCL OS device that
correspond to the same physical card.
If not NULL, parameter subtype only select objects whose subtype attribute exists and is subtype (case-
insensitively), for instance "OpenCL" or "CUDA".
If not NULL, parameter namepre fix only selects objects whose name attribute exists and starts with nameprefix
(case-insensitively), for instance "rsmi" for matching "rsmi0".
If multiple objects match, the first one is returned.
This function will not walk the hierarchy across bridges since the PCl locality may become different. This function cannot
also convert between normal/memory objects and 1/0 or Misc objects.
flags mustbe 0 for now.

Returns

An object with identical locality, matching subt ype and nameprefix if any.

NULL if no matching object could be found, or if the source object and target type are incompatible, for instance if
converting between CPU and I/O objects.

23.20.2.7 hwloc_get_pu_obj_by os_index()

hwloc_obj_t hwloc_get_pu_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_PU with os_ index.
This function is useful for converting a CPU set into the PU objects it contains. When retrieving the current binding (e.g.
with hwloc_get_cpubind()), one may iterate over the bits of the resulting CPU set with hwloc_bitmap_foreach_begin(),
and find the corresponding PUs with this function.

Generated by Doxygen

23.21 Distributing items over a topology 149

Returns

the PU object, or NULL if none matches.

23.21 Distributing items over a topology

Enumerations

+ enum hwloc_distrib_flags_e { HWLOC_DISTRIB_FLAG_REVERSE }

Functions
+ int hwloc_distrib (hwloc_topology_t topology, hwloc_obj_t xroots, unsigned n_roots, hwloc_cpuset_t *set, un-
signed n, int until, unsigned long flags)
23.21.1 Detailed Description
23.21.2 Enumeration Type Documentation
23.21.2.1 hwloc_distrib_flags_e

enum hwloc_distrib_flags_e
Flags to be given to hwloc_distrib().

Enumerator

HWLOC_DISTRIB_FLAG_REVERSE ‘ Distrib in reverse order, starting from the last objects.

23.21.3 Function Documentation
23.21.3.1 hwloc_distrib()

int hwloc_distrib (

hwloc_topology_t topology,

hwloc_obj_t * roots,

unsigned n_roots,

hwloc_cpuset_t * set,

unsigned n,

int until,

unsigned long flags) [inline]
Distribute n items over the topology under roots.
Array set will be filled with n cpusets recursively distributed linearly over the topology under objects root s, down to
depth unt il (which can be INT_MAX to distribute down to the finest level).
n_roots is usually 1 and roots only contains the topology root object so as to distribute over the entire topology.
This is typically useful when an application wants to distribute n threads over a machine, giving each of them as much
private cache as possible and keeping them locally in number order.
The caller may typically want to also call hwloc_bitmap_singlify() before binding a thread so that it does not move at all.
flags should be 0 or a OR'ed set of hwloc_distrib_flags_e.

Returns

0 on success, -1 on error.

Generated by Doxygen

150 Topic Documentation

Note

On hybrid CPUs (or asymmetric platforms), distribution may be suboptimal since the number of cores or PUs inside
packages or below caches may vary (the top-down recursive partitioning ignores these numbers until reaching their
levels). Hence it is recommended to distribute only inside a single homogeneous domain. For instance on a CPU
with energy-efficient E-cores and high-performance P-cores, one should distribute separately N tasks on E-cores
and M tasks on P-cores instead of trying to distribute directly M+N tasks on the entire CPUs.

This function requires the root s objects to have a CPU set.

23.22 CPU and node sets of entire topologies

Functions

» hwloc_const_cpuset_t hwloc_topology_get _complete_cpuset (hwloc_topology_t topology)

» hwloc_const_cpuset_t hwloc_topology_get topology_cpuset (hwloc_topology_t topology)

» hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology)

» hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t topology)

23.22.1 Detailed Description

23.22.2 Function Documentation
23.22.2.1 hwloc_topology_get_allowed_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (

hwloc_topology_t topology)
Get allowed CPU set.

Returns

the CPU set of allowed processors of the system.

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology_cpuset(), which means all PUs are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on the re-
sult of this function and on an object cpuset checks whether there are allowed PUs inside that object. Applying
hwloc_bitmap_and() returns the list of these allowed PUs.

The returned cpuset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup() must be
used to obtain a local copy.

23.22.2.2 hwloc_topology_get_allowed_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (
hwloc_topology_t topology)
Get allowed node set.

Returns

the node set of allowed memory of the system.

Generated by Doxygen

23.22 CPU and node sets of entire topologies 151

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology nodeset(), which means all NUMA nodes are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on the re-
sult of this function and on an object nodeset checks whether there are allowed NUMA nodes inside that object.
Applying hwloc_bitmap_and() returns the list of these allowed NUMA nodes.

The returned nodeset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup() must
be used to obtain a local copy.

23.22.2.3 hwloc_topology_get complete_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (
hwloc_topology_t topology)
Get complete CPU set.

Returns

the complete CPU set of processors of the system.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must be
used to obtain a local copy.

This is equivalent to retrieving the root object complete CPU-set.

23.22.2.4 hwloc_topology_get_complete_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (
hwloc_topology_t topology)
Get complete node set.

Returns

the complete node set of memory of the system.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must
be used to obtain a local copy.

This is equivalent to retrieving the root object complete nodeset.

23.22.2.5 hwloc_topology_get_topology cpuset()

hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (
hwloc_topology_t topology)
Get topology CPU set.

Generated by Doxygen

152 Topic Documentation

Returns

the CPU set of processors of the system for which hwloc provides topology information. This is equivalent to the
cpuset of the system object.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must be
used to obtain a local copy.

This is equivalent to retrieving the root object CPU-set.

23.22.2.6 hwloc_topology_get_topology nodeset()

hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (
hwloc_topology_t topology)
Get topology node set.

Returns

the node set of memory of the system for which hwloc provides topology information. This is equivalent to the
nodeset of the system object.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must
be used to obtain a local copy.

This is equivalent to retrieving the root object nodeset.

23.23 Converting between CPU sets and node sets

Functions

+ int hwloc_cpuset_to_nodeset (hwloc_topology t topology, hwloc_const_cpuset t _cpuset, hwloc_nodeset_t
nodeset)

« int hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t _cpuset, hwloc_const_nodeset_t
nodeset)

23.23.1 Detailed Description

23.23.2 Function Documentation
23.23.2.1 hwloc_cpuset_from_nodeset()

int hwloc_cpuset_from_nodeset (
hwloc_topology_t topology,
hwloc_cpuset_t _cpuset,
hwloc_const_nodeset_t nodeset) [inline]
Convert a NUMA node set into a CPU set.
For each NUMA node included in the input nodeset, set the corresponding local PUs in the output _cpuset.
If some CPUs have no local NUMA nodes, this function never sets their indexes in the output CPU set, even if a full
node set is given in input.
Hence the entire topology node set is converted into the set of all CPUs that have some local NUMA nodes.

Generated by Doxygen

23.24 Finding I/O objects

153

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

23.23.2.2 hwloc_cpuset_to_nodeset()

int hwloc_cpuset_to_nodeset (
hwloc_topology_t topology,
hwloc_const_cpuset_t _cpuset,
hwloc_nodeset_t nodeset) [inline]

Convert a CPU set into a NUMA node set.

For each PU included in the input _cpuset, set the corresponding local NUMA node(s) in the output nodeset.

If some NUMA nodes have no CPUs at all, this function never sets their indexes in the output node set, even if a full

CPU set is given in input.

Hence the entire topology CPU set is converted into the set of all nodes that have some local CPUs.

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

23.24 Finding /O objects

Functions

» hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_topology t topology, hwloc_obj_t ioobj)
» hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_pcidev_by busid (hwloc_topology_t topology, unsigned domain, unsigned bus, unsigned

deyv, unsigned func)

» hwloc_obj_t hwloc_get_pcidev_by_busidstring (hwloc_topology_t topology, const char xbusid)
» hwloc_obj_t hwloc_get_next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_bridge (hwloc_topology_t topology, hwloc_obj_t prev)

+ int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned bus)

23.24.1 Detailed Description

23.24.2 Function Documentation
23.24.2.1 hwloc_bridge_covers_pcibus()

int hwloc_bridge_covers_pcibus (
hwloc_obj_t bridge,
unsigned domain,

unsigned bus) [inline]

23.24.2.2 hwloc_get_next_bridge()

hwloc_obj_t hwloc_get_next_bridge (
hwloc_topology_t topology,
hwloc_obij_t prev) [inline]
Get the next bridge in the system.

Generated by Doxygen

154 Topic Documentation

Returns
the first bridge if prev is NULL.
the next bridge if prev is not NULL.
NULL if there is no next bridge.

23.24.2.3 hwloc_get_next_osdev()

hwloc_obj_t hwloc_get_next_osdev (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next OS device in the system.

Returns
the first OS device if prev is NULL.

the next OS device if prev is not NULL.
NULL if there is no next OS device.

23.24.2.4 hwloc_get_next_pcidev()

hwloc_obj_t hwloc_get_next_pcidev (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next PCl device in the system.

Returns
the first PCI device if prev is NULL.

the next PCl device if prev is not NULL.
NULL if there is no next PCI device.

23.24.2.5 hwloc_get_non_io_ancestor_obij()

hwloc_obj_t hwloc_get_non_io_ancestor_obj (
hwloc_topology_t topology,
hwloc_obij_t ioobj) [inline]
Get the first non-I/O ancestor object.
Given the I/O object ioobj, find the smallest non-I/O ancestor object. This object (normal or memory) may then be
used for binding because it has non-NULL CPU and node sets and because its locality is the same as i00bj.

Returns

a non-1/O object.

Note

This function cannot return NULL.

The resulting object is usually a normal object but it could also be a memory object (e.g. NUMA node) in future
platforms if I/O objects ever get attached to memory instead of CPUs.

Generated by Doxygen

23.25 The bitmap API

155

23.24.2.6 hwloc_get_pcidev_by busid()

hwloc_obj_t hwloc_get_pcidev_by_busid (
hwloc_topology_t topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func) [inline]
Find the PCI device object matching the PCI bus id given domain, bus device and function PCI bus id.

Returns

a matching PCI device object if any, NULL otherwise.

23.24.2.7 hwloc_get_pcidev_by_busidstring()

hwloc_obj_t hwloc_get_pcidev_by_busidstring (
hwloc_topology_t topology,
const char *x busid) [inline]
Find the PCI device object matching the PCI bus id given as a string xxxx:yy:zz.t or yy:zz.t.

Returns

a matching PCI device object if any, NULL otherwise.

23.25 The bitmap API

Macros

« #define hwloc_bitmap_foreach_begin(id, bitmap)
+ #define hwloc_bitmap_foreach_end()

Typedefs

« typedef struct hwloc_bitmap_s * hwloc_bitmap_t
» typedef const struct hwloc_bitmap_s * hwloc_const_bitmap_t

Functions

» hwloc_bitmap_t hwloc_bitmap_alloc (void)

» hwloc_bitmap_t hwloc_bitmap_alloc_full (void)

« void hwloc_bitmap_free (hwloc_bitmap_t bitmap)

» hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap)

+ int hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)

« int hwloc_bitmap_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_asprintf (char *xstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_list_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
« int hwloc_bitmap_list_asprintf (char xxstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_taskset_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
« int hwloc_bitmap_taskset_asprintf (char xxstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

+ void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)

« void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)

Generated by Doxygen

156 Topic Documentation

« int hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)

« int hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_from_ulongs (hwloc_bitmap_t bitmap, unsigned nr, const unsigned long xmasks)

« int hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_singlify (hwloc_bitmap_t bitmap)

+ unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)

+ unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)

+ int hwloc_bitmap_to_ulongs (hwloc_const_bitmap_t bitmap, unsigned nr, unsigned long xmasks)

« int hwloc_bitmap_nr_ulongs (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)

* int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first_unset (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next_unset (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last_unset (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)
« int hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_bitmap)

« int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

« int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

« int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

23.25.1 Detailed Description

The hwloc_bitmap_t type represents a set of integers (positive or null). A bitmap may be of infinite size (all bits are set
after some point). A bitmap may even be full if all bits are set.

Bitmaps are used by hwloc for sets of OS processors (which may actually be hardware threads) as by
hwloc_cpuset_t (a typedef for hwloc_bitmap_t), or sets of NUMA memory nodes as hwloc_nodeset_t (also a
typedef for hwloc_bitmap_t). Those are used for cpuset and nodeset fields in the hwloc_obj structure, see
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t).

Both CPU and node sets are always indexed by OS physical number. However users should usually not build CPU and
node sets manually (e.g. with hwloc_bitmap_set()). One should rather use existing object sets and combine them with

hwloc_bitmap_or(), etc. For instance, binding the current thread on a pair of cores may be performed with:
hwloc_obj_t corel = ... , core2 = ... ;

hwloc_bitmap_t set = hwloc_bitmap_alloc();

hwloc_bitmap_or (set, corel->cpuset, core2->cpuset);

hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD) ;

hwloc_bitmap_free (set);

Generated by Doxygen

23.25 The bitmap API 157

Note

Most functions below return 0 on success and -1 on error. The usual error case would be an internal failure to
realloc/extend the storage of the bitmap (errno would be set to ENOMEM). See also Error reporting in the APL.

Several examples of using the bitmap API are available under the doc/examples/ directory in the source tree.
Regression tests such as tests/hwloc/hwloc_bitmap:.c also make intensive use of this API.

23.25.2 Macro Definition Documentation
23.25.2.1 hwloc_bitmap_foreach_begin

#define hwloc_bitmap_foreach_begin (

id,

bitmap)
Loop macro iterating on bitmap bitmap.
The loop must start with hwloc_bitmap_foreach_begin() and end with hwloc_bitmap_foreach_end() followed by a termi-
nating ';'.
id is the loop variable; it should be an unsigned int. The first iteration will set id to the lowest index in the bitmap.
Successive iterations will iterate through, in order, all remaining indexes set in the bitmap. To be specific: each iteration
will return a value for id such that hwloc_bitmap_isset(bitmap, id) is true.
The assert prevents the loop from being infinite if the bitmap is infinitely set.

23.25.2.2 hwloc_bitmap_foreach_end

#define hwloc_bitmap_foreach_end()
End of loop macro iterating on a bitmap.
Needs a terminating ;.

See also

hwloc_bitmap_foreach_begin()

23.25.3 Typedef Documentation

23.25.3.1 hwloc_bitmap_t

typedef struct hwloc_bitmap_s* hwloc_bitmap_t

Set of bits represented as an opaque pointer to an internal bitmap.
23.25.3.2 hwloc_const_bitmap_t

typedef const struct hwloc_bitmap_s* hwloc_const_bitmap_t
a non-modifiable hwloc_bitmap_t

23.25.4 Function Documentation
23.25.4.1 hwloc_bitmap_allbut()

int hwloc_bitmap_allbut (
hwloc_bitmap_t bitmap,
unsigned id)

Fill the bitmap and clear the index id.

23.25.4.2 hwloc_bitmap_alloc()

hwloc_bitmap_t hwloc_bitmap_alloc (
void)
Allocate a new empty bitmap.

Generated by Doxygen

158 Topic Documentation

Returns

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

23.25.4.3 hwloc_bitmap_alloc_full()

hwloc_bitmap_t hwloc_bitmap_alloc_full (
void)
Allocate a new full bitmap.

Returns

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

23.25.4.4 hwloc_bitmap_and()

int hwloc_bitmap_and (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
And bitmaps bitmapl and bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.5 hwloc_bitmap_andnot()

int hwloc_bitmap_andnot (

hwloc_bitmap_t res,

hwloc_const_bitmap_t bitmapl,

hwloc_const_bitmap_t bitmapZ2)
And bitmap bitmapl and the negation of bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.6 hwloc_bitmap_asprintf()

int hwloc_bitmap_asprintf (
char *x strp,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated string in the default hwloc format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits 1,
33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002".

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

23.25.4.7 hwloc_bitmap_clr()

int hwloc_bitmap_clr (
hwloc_bitmap_t bitmap,
unsigned id)

Remove index id from bitmap bitmap.

Generated by Doxygen

23.25 The bitmap API 159

23.25.4.8 hwloc_bitmap_clr_range()

int hwloc_bitmap_clr_range (

hwloc_bitmap_t bitmap,

unsigned begin,

int end)
Remove indexes from begin to end in bitmap bitmap.
If end is —1, the range is infinite.

23.25.4.9 hwloc_bitmap_compare()

int hwloc_bitmap_compare (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 in lexicographic order.
Lexicographic comparison of bitmaps, starting for their highest indexes. Compare last indexes first, then second, etc.
The empty bitmap is considered lower than anything.

Returns

-1ifbitmapl is considered smaller than bitmap?2.
1if bitmapl is considered larger than bitmap?2.

0 if bitmaps are equal (contrary to hwloc_bitmap_compare_first()).

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110). Com-
paring 00101 and 01010 returns -1 too.

Note

This is different from the non-existing hwloc_bitmap_compare_last() which would only compare the highest index
of each bitmap.

23.25.4.10 hwloc_bitmap_compare_first()

int hwloc_bitmap_compare_first (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 using their lowest index.
A bitmap is considered smaller if its least significant bit is smaller. The empty bitmap is considered higher than anything
(because its least significant bit does not exist).

Returns

-1ifbitmapl is considered smaller than bitmap?2.

1if bitmapl is considered larger than bitmap?2.

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110) because
least significant bit of 0011 (0001) is smaller than least significant bit of 0110 (0010). Comparing 01001 and 00110 would
also return -1 for the same reason.

Returns

0 if bitmaps are considered equal, even if they are not strictly equal. They just need to have the same least
significant bit. For instance, comparing binary bitmaps 0010 and 0110 returns 0 because they have the same
least significant bit.

Generated by Doxygen

160 Topic Documentation

23.25.4.11 hwloc_bitmap_copy()

int hwloc_bitmap_copy (
hwloc_bitmap_t dst,
hwloc_const_bitmap_t src)
Copy the contents of bitmap sxc into the already allocated bitmap dst.

23.25.4.12 hwloc_bitmap_dup()

hwloc_bitmap_t hwloc_bitmap_dup (

hwloc_const_bitmap_t bitmap)
Duplicate bitmap bitmap by allocating a new bitmap and copying bitmap contents.
If bitmap is NULL, NULL is returned.

23.25.4.13 hwloc_bitmap_fill()

void hwloc_bitmap_fill (
hwloc_bitmap_t bitmap)
Fill bitmap bitmap with all possible indexes (even if those objects don't exist or are otherwise unavailable)

23.25.4.14 hwloc_bitmap_first()

int hwloc_bitmap_first (
hwloc_const_bitmap_t bitmap)
Compute the first index (least significant bit) in bitmap bitmap.

Returns

the first index set in bitmap.
-1if bitmap is empty.

23.25.4.15 hwloc_bitmap_first_unset()

int hwloc_bitmap_first_unset (
hwloc_const_bitmap_t bitmap)
Compute the first unset index (least significant bit) in bitmap bitmap.

Returns

the first unset index in bitmap.

-1if bitmap is full.

23.25.4.16 hwloc_bitmap_free()

void hwloc_bitmap_free (

hwloc_bitmap_t bitmap)
Free bitmap bitmap.
If bitmap is NULL, no operation is performed.

23.25.4.17 hwloc_bitmap_from_ith_ulong()

int hwloc_bitmap_from_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned 1,
unsigned long mask)
Setup bitmap bitmap from unsigned long ma sk used as i -th subset.

Generated by Doxygen

23.25 The bitmap API 161

23.25.4.18 hwloc_bitmap_from_ulong()

int hwloc_bitmap_from_ulong (
hwloc_bitmap_t bitmap,
unsigned long mask)

Setup bitmap bitmap from unsigned long mask.

23.25.4.19 hwloc_bitmap_from_ulongs()

int hwloc_bitmap_from_ulongs (
hwloc_bitmap_t bitmap,
unsigned nr,
const unsigned long * masks
Setup bitmap bitmap from unsigned longs masks used as first nr subsets.

23.25.4.20 hwloc_bitmap_intersects()

int hwloc_bitmap_intersects (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmaps bitmapl and bitmap?2 intersects.

Returns

1 if bitmaps intersect, 0 otherwise.

Note

The empty bitmap does not intersect any other bitmap.

23.25.4.21 hwloc_bitmap_isequal()

int hwloc_bitmap_isequal (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmap bitmapl is equal to bitmap bitmap?2.

Returns

1 if bitmaps are equal, 0 otherwise.

23.25.4.22 hwloc_bitmap_isfull()

int hwloc_bitmap_isfull (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is completely full.

Returns

1 if bitmap is full, 0 otherwise.

Note

A full bitmap is always infinitely set.

Generated by Doxygen

162 Topic Documentation

23.25.4.23 hwloc_bitmap_isincluded()

int hwloc_bitmap_isincluded (
hwloc_const_bitmap_t sub_bitmap,
hwloc_const_bitmap_t super_bitmap)

Test whether bitmap sub_bitmap is part of bitmap super_bitmap.

Returns

1if sub_bitmap isincluded in super_bitmap, 0 otherwise.

Note

The empty bitmap is considered included in any other bitmap.

23.25.4.24 hwloc_bitmap_isset()

int hwloc_bitmap_isset (
hwloc_const_bitmap_t bitmap,
unsigned id)

Test whether index 1d is part of bitmap bitmap.

Returns

1 if the bit at index 1d is set in bitmap bitmap, 0 otherwise.

23.25.4.25 hwloc_bitmap_iszero()

int hwloc_bitmap_iszero (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is empty.

Returns

1 if bitmap is empty, 0 otherwise.

23.25.4.26 hwloc_bitmap_last()

int hwloc_bitmap_last (
hwloc_const_bitmap_t bitmap)
Compute the last index (most significant bit) in bitmap bitmap.

Returns

the last index set in bitmap.

-1 if bitmap is empty, or if bitmap is infinitely set.

23.25.4.27 hwloc_bitmap_last_unset()

int hwloc_bitmap_last_unset (
hwloc_const_bitmap_t bitmap)
Compute the last unset index (most significant bit) in bitmap bitmap.

Returns

the last index unset in bitmap.
-1 if bitmap is full, or if bitmap is not infinitely set.

Generated by Doxygen

23.25 The bitmap API 163

23.25.4.28 hwloc_bitmap_list_asprintf()

int hwloc_bitmap_list_asprintf (

char **x strp,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated list string.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33, 34,
and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the bitmap is
infinitely set.

Returns

the number of characters that were written (not including the ending \ 0).
-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

23.25.4.29 hwloc_bitmap_list_snprintf()

int hwloc_bitmap_list_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the list format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33, 34,
and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the bitmap is
infinitely set.
Up to buflen characters may be written in buffer bu .
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.

23.25.4.30 hwloc_bitmap_list_sscanf()

int hwloc_bitmap_list_sscanf (
hwloc_bitmap_t bitmap,
const char *restrict string)
Parse a list string and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. String "1, 33-34, 64-95" is
parsed as a bitmap containing bits 1, 33, 34, and all from 64 to 95. The last range may not have an ending index if the
bitmap is infinitely set.
Returns

0 on success, -1 on error.

23.25.4.31 hwloc_bitmap_next()

int hwloc_bitmap_next (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next index in bitmap bitmap which is after index prev.

Generated by Doxygen

164 Topic Documentation

Returns

the first index set in bitmap if previs - 1.
the next index setin bitmap if previs not —1.

-1 if no index with higher index is set in bitmap.

23.25.4.32 hwloc_bitmap_next_unset()

int hwloc_bitmap_next_unset (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next unset index in bitmap bitmap which is after index prev.

Returns

the first index unset in bitmap if previs —1.
the next index unset in bitmap if previs not -1.

-1 if no index with higher index is unset in bitmap.

23.25.4.33 hwloc_bitmap_not()

int hwloc_bitmap_not (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmap)
Negate bitmap bitmap and store the result in bitmap res.
res can be the same as bitmap

23.25.4.34 hwloc_bitmap_nr_ulongs()

int hwloc_bitmap_nr_ulongs (

hwloc_const_bitmap_t bitmap)
Return the number of unsigned longs required for storing bitmap bitmap entirely.
This is the number of contiguous unsigned longs from the very first bit of the bitmap (even if unset) up to the
last set bit. This is useful for knowing the nr parameter to pass to hwloc_bitmap_to_ulongs() (or which calls to
hwloc_bitmap_to_ith_ulong() are needed) to entirely convert a bitmap into multiple unsigned longs.
When called on the output of hwloc_topology_get topology cpuset(), the returned number is large enough for all
cpusets of the topology.

Returns

the number of unsigned longs required.

-1 if bitmap is infinite.

23.25.4.35 hwloc_bitmap_only()

int hwloc_bitmap_only (
hwloc_bitmap_t bitmap,
unsigned id)

Empty the bitmap bitmap and add bit id.

Generated by Doxygen

23.25 The bitmap API

165

23.25.4.36 hwloc_bitmap_or()

int hwloc_bitmap_or (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Or bitmaps bitmapl and bitmap2 and store the result in bitmap res.

res can be the same as bitmapl or bitmap?2

23.25.4.37 hwloc_bitmap_set()

int hwloc_bitmap_set (
hwloc_bitmap_t bitmap,
unsigned id)

Add index id in bitmap bitmap.

23.25.4.38 hwloc_bitmap_set_ith_ulong()

int hwloc_bitmap_set_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned i,
unsigned long mask)
Replace 1 -th subset of bitmap bitmap with unsigned long mask.

23.25.4.39 hwloc_bitmap_set_range()

int hwloc_bitmap_set_range (

hwloc_bitmap_t bitmap,

unsigned begin,

int end)
Add indexes from begin to end in bitmap bitmap.
If endis -1, the range is infinite.

23.25.4.40 hwloc_bitmap_singlify()

int hwloc_bitmap_singlify (
hwloc_bitmap_t bitmap)
Keep a single index among those set in bitmap bitmap.

May be useful before binding so that the process does not have a chance of migrating between multiple processors in
the original mask. Instead of running the task on any PU inside the given CPU set, the operating system scheduler will
be forced to run it on a single of these PUs. It avoids a migration overhead and cache-line ping-pongs between PUs.

Note

This function is NOT meant to distribute multiple processes within a single CPU set. It always return the same
single bit when called multiple times on the same input set. hwloc_distrib() may be used for generating CPU sets

to distribute multiple tasks below a single multi-PU object.

This function cannot be applied to an object set directly. It should be applied to a copy (which may be obtained

with hwloc_bitmap_dup()).

23.25.4.41 hwloc_bitmap_snprintf()

int hwloc_bitmap_snprintf (

char xrestrict buf,

Generated by Doxygen

166 Topic Documentation

size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the default hwloc format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits 1,
33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002™".
Up to buflen characters may be written in buffer buf.
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.

23.25.4.42 hwloc_bitmap_sscanf()

int hwloc_bitmap_sscanf (
hwloc_bitmap_t bitmap,
const char *restrict string)
Parse a bitmap string as the default hwloc format and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
The input string should be a comma-separared list of hexadecimal 32-bit blocks. String "Oxffffffff, 0x6, 0x2"
is parsed as a bitmap containing all bits between 64 and 95, and bits 33, 34 and 1.

Returns

0 on success, -1 on error.

23.25.4.43 hwloc_bitmap_taskset_asprintf()

int hwloc_bitmap_taskset_asprintf (
char *x strp,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated taskset-specific string.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printedas "Oxfff£ff£££0000000600000002".

Returns

the number of characters that were written (not including the ending \ 0).
-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

23.25.4.44 hwloc_bitmap_taskset_snprintf()

int hwloc_bitmap_taskset_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the taskset-specific format.
Note that if the bitmap is a CPU or nodeset, it contains physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printed as "0xffffffff0000000600000002".
Up to buflen characters may be written in buffer bu f.
If buflenis 0, buf may safely be NULL.

Generated by Doxygen

23.25 The bitmap API 167

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.

23.25.4.45 hwloc_bitmap_taskset_sscanf()

int hwloc_bitmap_taskset_sscanf (

hwloc_bitmap_t bitmap,

const char *restrict string)
Parse a taskset-specific bitmap string and stores it in bitmap bitmap.
Note that if the bitmap is a CPU or nodeset, the input string must contain physical indexes.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. String "Oxff£f£f££££0000000600000002" is parsed as a bitmap containing all bits between 64 and 95,
and bits 33, 34 and 1.

Returns

0 on success, -1 on error.

23.25.4.46 hwloc_bitmap_to_ith_ulong()

unsigned long hwloc_bitmap_to_ith_ulong (
hwloc_const_bitmap_t bitmap,
unsigned 1)

Convert the i -th subset of bitmap bitmap into unsigned long mask.

23.25.4.47 hwloc_bitmap_to_ulong()

unsigned long hwloc_bitmap_to_ulong (
hwloc_const_bitmap_t bitmap)
Convert the beginning part of bitmap bitmap into unsigned long mask.

23.25.4.48 hwloc_bitmap_to_ulongs()

int hwloc_bitmap_to_ulongs (

hwloc_const_bitmap_t bitmap,

unsigned nr,

unsigned long * masks)
Convert the first nr subsets of bitmap bitmap into the array of nr unsigned long masks.
nr may be determined earlier with hwloc_bitmap_nr_ulongs().

Returns

0

23.25.4.49 hwloc_bitmap_weight()

int hwloc_bitmap_weight (
hwloc_const_bitmap_t bitmap)
Compute the "weight" of bitmap bitmap (i.e., number of indexes that are in the bitmap).

Returns
the number of indexes that are in the bitmap.
-1 if bitmap is infinitely set.

Generated by Doxygen

168 Topic Documentation

23.25.4.50 hwloc_bitmap_xor()

int hwloc_bitmap_xor (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Xor bitmaps bitmapl and bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

23.25.4.51 hwloc_bitmap_zero()

void hwloc_bitmap_zero (
hwloc_bitmap_t bitmap)
Empty the bitmap bitmap.

23.26 Exporting Topologies to XML

Enumerations

» enum hwloc_topology_export_xml_flags_e { HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1}

Functions

+ int hwloc_topology_export_xml (hwloc_topology_t topology, const char xxmlpath, unsigned long flags)

« int hwloc_topology_export_xmlbuffer (hwloc_topology_t topology, char xxxmlbuffer, int xbuflen, unsigned long
flags)

« void hwloc_free_xmlbuffer (hwloc_topology_t topology, char sxmlbuffer)

» void hwloc_topology_set userdata_export_callback (hwloc_topology t topology, void(xexport_cb)(void
xreserved, hwloc_topology_t topology, hwloc_obj_t obj))

« int hwloc_export_obj_userdata (void xreserved, hwloc_topology_t topology, hwloc_obj_t obj, const char xname,
const void xbuffer, size_t length)

« int hwloc_export_obj_userdata_base64 (void xreserved, hwloc_topology_t topology, hwloc_obj_t obj, const char
xname, const void xbuffer, size_t length)

+ void hwloc_topology_set userdata_import_callback (hwloc_topology_t topology, void(ximport_cb)(hwloc_topology_t
topology, hwloc_obj_t obj, const char xname, const void xbuffer, size_t length))

23.26.1 Detailed Description

23.26.2 Enumeration Type Documentation
23.26.2.1 hwloc_topology_export_xmli_flags_e

enum hwloc_topology_export_xml_flags_e
Flags for exporting XML topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_xml().

Enumerator

HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 | Export XML that is loadable by hwloc v1.x. However, the
export may miss some details about the topology.

Generated by Doxygen

23.26 Exporting Topologies to XML 169

23.26.3 Function Documentation
23.26.3.1 hwloc_export_obj_userdata()

int hwloc_export_obj_userdata (

void x reserved,

hwloc_topology_t topology,

hwloc_obj_t obj,

const char * name,

const void * buffer,

size_t length)
Export some object userdata to XML.
This function may only be called from within the export() callback passed to hwloc_topology_set_userdata_export_callback().
It may be invoked one of multiple times to export some userdata to XML. The buf fer content of length 1ength is
stored with optional name name.
When importing this XML file, the import() callback (if set) will be called exactly as many times as hwloc_export_obj_userdata()
was called during export(). It will receive the corresponding name, buffer and 1length arguments.
reserved, topology and obj must be the first three parameters that were given to the export callback.
Only printable characters may be exported to XML string attributes.
If exporting binary data, the application should first encode into printable characters only (or use hwloc_export_obj_userdata_base64()).
It should also take care of portability issues if the export may be reimported on a different architecture.

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name or buffer.

23.26.3.2 hwloc_export_obj_userdata_base64()

int hwloc_export_obj_userdata_base64 (
void *x reserved,
hwloc_topology_t topology,
hwloc_obj_t obj,
const char * name,
const void x buffer,
size_t length)
Encode and export some object userdata to XML.
This function is similar to hwloc_export_obj_userdata() but it encodes the input buffer into printable characters before
exporting. On import, decoding is automatically performed before the data is given to the import() callback if any.
This function may only be called from within the export() callback passed to hwloc_topology_set_userdata_export_callback().
The name must be made of printable characters for export to XML string attributes.
The function does not take care of portability issues if the export may be reimported on a different architecture.

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name.

23.26.3.3 hwloc_free_xmlibuffer()

void hwloc_free_xmlbuffer (
hwloc_topology_t topology,
char x xmlbuffer)
Free a buffer allocated by hwloc_topology_export_xmlbuffer()

Generated by Doxygen

170 Topic Documentation

23.26.3.4 hwloc_topology_export_xml()

int hwloc_topology_export_xml (

hwloc_topology_t topology,

const char * xmlpath,

unsigned long flags)
Export the topology into an XML file.
This file may be loaded later through hwloc_topology_set_xml().
By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import
it. Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 but it
may miss some details about the topology. If there is any chance that the exported file may ever be imported back by a
process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export format.
flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Note

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-ASCI|
character, will be silently dropped.

If name is "-", the XML output is sent to the standard output.

23.26.3.5 hwloc_topology_export_xmlbuffer()

int hwloc_topology_export_xmlbuffer (
hwloc_topology_t topology,
char *x xmlbuffer,
int % buflen,
unsigned long flags)
Export the topology into a newly-allocated XML memory buffer.
xmlbuf fer is allocated by the callee and should be freed with hwloc_free_xmlbuffer() later in the caller.
This memory buffer may be loaded later through hwloc_topology_set_xmilbuffer().
By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import it.
Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 but it may
miss some details about the topology. If there is any chance that the exported buffer may ever be imported back by a
process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export format.
The returned buffer ends with a \0 that is included in the returned length.
flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Note
See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-ASCI|
character, will be silently dropped.

Generated by Doxygen

23.27 Exporting Topologies to Synthetic 171

23.26.3.6 hwloc_topology_set_userdata_export_callback()

void hwloc_topology_set_userdata_export_callback (

hwloc_topology_t topology,

void (*) (void *reserved, hwloc_topology_t topology, hwloc_obj_t obj) export_cb)
Set the application-specific callback for exporting object userdata.
The object userdata pointer is not exported to XML by default because hwloc does not know what it contains.
This function lets applications set export_cb to a callback function that converts this opaque userdata into an ex-
portable string.
export_cb is invoked during XML export for each object whose userdata pointer is not NULL. The callback
should use hwloc_export_obj_userdata() or hwloc_export_obj_userdata_base64() to actually export something to XML
(possibly multiple times per object).
export_cb may be set to NULL if userdata should not be exported to XML.

Note

The topology-specific userdata pointer is ignored when exporting to XML.

23.26.3.7 hwloc_topology_set_userdata_import_callback()

void hwloc_topology_set_userdata_import_callback (

hwloc_topology_t topology,

void (*) (hwloc_topology_t topology, hwloc_obj_t obj, const char *name, const void
spbuffer, size_t length) import_cb)
Set the application-specific callback for importing userdata.
On XML import, userdata is ignored by default because hwloc does not know how to store it in memory.
This function lets applications set import_cb to a callback function that will get the XML-stored userdata and store it
in the object as expected by the application.
import_cb is called during hwloc_topology_load() as many times as hwloc_export_obj_userdata() was called during
export. The topology is not entirely setup yet. Object attributes are ready to consult, but links between objects are not.
import_cb may be NULL if userdata should be ignored during import.

Note

buffer contains length characters followed by a null byte (\0').
This function should be called before hwloc_topology_load().
The topology-specific userdata pointer is ignored when importing from XML.

23.27 Exporting Topologies to Synthetic

Enumerations

» enum hwloc_topology_export_synthetic_flags_e { HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_TYPES
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS , HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY }

Functions

« int hwloc_topology_export_synthetic (hwloc_topology_t topology, char xbuffer, size_t buflen, unsigned long flags)

23.27.1 Detailed Description

23.27.2 Enumeration Type Documentation
23.27.2.1 hwloc_topology_export_synthetic_flags_e

enum hwloc_topology_export_synthetic_flags_e

Generated by Doxygen

172 Topic Documentation

Flags for exporting synthetic topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_synthetic().

Enumerator

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_« | Export extended types such as L2dcache as basic types
FLAG_NO_EXTENDED_TYPES | such as Cache. This is required if loading the synthetic
description with hwloc < 1.9.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_« | Do not export level attributes. Ignore level attributes

FLAG_NO_ATTRS | such as memory/cache sizes or PU indexes. This is
required if loading the synthetic description with hwloc
< 1.10.
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_« | Export the memory hierarchy as expected in hwloc 1.x.

FLAG_V1 | Instead of attaching memory children to levels, export

single NUMA node child as normal intermediate levels,
when possible. This is required if loading the synthetic
description with hwloc 1.x. However this may fail if some
objects have multiple local NUMA nodes.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_+« | Do not export memory information. Only export the

FLAG_IGNORE_MEMORY | actual hierarchy of normal CPU-side objects and ignore
where memory is attached. This is useful for when the
hierarchy of CPUs is what really matters, but it behaves
as if there was a single machine-wide NUMA node.

23.27.3 Function Documentation
23.27.3.1 hwloc_topology_export_synthetic()

int hwloc_topology_export_synthetic (
hwloc_topology_t topology,
char x buffer,
size_t buflen,
unsigned long flags)
Export the topology as a synthetic string.
At most buf 1len characters will be written in buf fer, including the terminating \0.
This exported string may be given back to hwloc_topology_set_synthetic().
flags is a OR'ed set of hwloc_topology export_synthetic_flags_e.

Returns

The number of characters that were written, not including the terminating \0.

-1 if the topology could not be exported, for instance if it is not symmetric.

Note

I/0 and Misc children are ignored, the synthetic string only describes normal children.

A 1024-byte buffer should be large enough for exporting topologies in the vast majority of cases.

23.28 Retrieve distances between objects

Data Structures

 struct hwloc_distances_s

Generated by Doxygen

23.28 Retrieve distances between objects

173

Enumerations

enum hwloc_distances_kind_e {

HWLOC_DISTANCES_KIND_FROM_OS , HWLOC_DISTANCES_KIND_FROM_USER , HWLOC_DISTANCES_KIND_MEANS_L.

, HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH ,
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES }

enum hwloc_distances_transform_e { HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL , HWLOC_DISTANCES_TRANSFO!
, HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS , HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSL

}

Functions

23.28.1

int hwloc_distances_get (hwloc_topology_t topology, unsigned snr, struct hwloc_distances_s *xdistances, un-
signed long kind, unsigned long flags)

int hwloc_distances_get by depth (hwloc_topology_t topology, int depth, unsigned xnr, struct hwloc_distances_s
xxdistances, unsigned long kind, unsigned long flags)

int hwloc_distances_get_by type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long kind, unsigned long flags)

int hwloc_distances_get_by_name (hwloc_topology t topology, const char xname, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long flags)

const char x hwloc_distances_get_name (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

void hwloc_distances_release (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

int hwloc_distances_transform (hwloc_topology_t topology, struct hwloc_distances_s xdistances,
hwloc_distances_transform_e transform, void xtransform_attr, unsigned long flags)

enum

Detailed Description

23.28.2 Enumeration Type Documentation
23.28.2.1 hwloc_distances_kind_e

enum hwloc_distances_kind_e
Kinds of distance matrices.

The kind attribute of struct hwloc_distances_s is a OR'ed set of kinds.
Each distance matrix may have only one kind among HWLOC_DISTANCES_KIND_FROM_x specifying where distance
information comes from, and one kind among HWLOC_DISTANCES_KIND_MEANS_x* specifying whether values are

latencies or bandwidths.

Enumerator

HWLOC_DISTANCES_KIND_FROM_OS

These distances were obtained from the operating
system or hardware.

HWLOC_DISTANCES_KIND_FROM_USER

These distances were provided by the user.

HWLOC_DISTANCES_KIND_MEANS_LATENCY

Distance values are similar to latencies between
objects. Values are smaller for closer objects, hence
minimal on the diagonal of the matrix (distance between
an object and itself). It could also be the number of
network hops between objects, etc.

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH

Distance values are similar to bandwidths between
objects. Values are higher for closer objects, hence
maximal on the diagonal of the matrix (distance
between an object and itself). Such values are currently
ignored for distance-based grouping.

Generated by Doxygen

174

Topic Documentation

Enumerator

HWLOC_DISTANCES_KIND_HETEROGENEOUS_ -
TYPES

This distances structure covers objects of different
types. This may apply to the "NVLinkBandwidth"
structure in presence of a NVSwitch or POWER
processor NVLink port.

23.28.2.2 hwloc_distances_transform_e

enum hwloc_distances_transform_e
Transformations of distances structures.

Enumerator

HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL

Remove NULL objects from the distances structure.
Every object that was replaced with NULL in the objs
array is removed and the values array is updated
accordingly.

At least 2 objects must remain, otherwise
hwloc_distances_transform() will return —1 with errno
setto EINVAL.

kind will be updated with or without
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPE
according to the remaining objects.

HWLOC_DISTANCES_TRANSFORM_LINKS

Replace bandwidth values with a number of links.
Usually all values will be either 0 (no link) or 1 (one
link). However some matrices could get larger values if
some pairs of peers are connected by different numbers
of links.

Values on the diagonal are set to 0.

This transformation only applies to bandwidth matrices.

HWLOC_DISTANCES_TRANSFORM_MERGE_+
SWITCH_PORTS

Merge switches with multiple ports into a single object.
This currently only applies to NVSwitches where GPUs
seem connected to different switch ports. Switch ports
must be objects with subtype "NVSwitch" as in the
NVLinkBandwidth matrix.

This transformation will replace all ports with only the
first one, now connected to all GPUs. Other ports are
removed by applying
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL
internally.

HWLOC_DISTANCES_TRANSFORM_TRANSITIVE«
_CLOSURE

Apply a transitive closure to the matrix to connect
objects across switches. All pairs of GPUs will be
reported as directly connected instead GPUs being only
connected to switches.

Switch ports must be objects with subtype "NVSwitch"
as in the NVLinkBandwidth matrix.

Generated by Doxygen

23.28 Retrieve distances between objects 175

23.28.3 Function Documentation
23.28.3.1 hwloc_distances_get()

int hwloc_distances_get (

hwloc_topology_t topology,

unsigned * nr,

struct hwloc_distances_s *x distances,

unsigned long kind,

unsigned long flags)
Retrieve distance matrices.
Retrieve distance matrices from the topology into the distances array.
flags is currently unused, should be 0.
kind serves as a filter. If 0, all distance matrices are returned. If it contains some HWLOC DISTANCES_ KIND«
_FROM_x, only distance matrices whose kind matches one of these are returned. If it contains some HWLOC_+«
DISTANCES_KIND_MEANS_ %, only distance matrices whose kind matches one of these are returned.
On input, nr points to the number of distance matrices that may be stored in distances. On output, nr points to
the number of distance matrices that were actually found, even if some of them couldn't be stored in distances.
Distance matrices that couldn't be stored are ignored, but the function still returns success (0). The caller may find out
by comparing the value pointed by nr before and after the function call.
Each distance matrix returned in the di st ances array should be released by the caller using hwloc_distances_release().

Returns

0 on success, -1 on error.

23.28.3.2 hwloc_distances_get_by_depth()

int hwloc_distances_get_by_depth (
hwloc_topology_t topology,
int depth,
unsigned * nr,
struct hwloc_distances_s *xx distances,
unsigned long kind,
unsigned long flags)
Retrieve distance matrices for object at a specific depth in the topology.
Identical to hwloc_distances_get() with the additional depth filter.

Returns

0 on success, -1 on error.

23.28.3.3 hwloc_distances_get_by_ name()

int hwloc_distances_get_by_name (
hwloc_topology_t topology,
const char * name,
unsigned * nr,
struct hwloc_distances_s xx distances,
unsigned long flags)
Retrieve a distance matrix with the given name.
Usually only one distances structure may match a given name.
The name of the most common structure is "NUMALatency". Others include "XGMIBandwidth", "XGMIHops", "XeLink+«
Bandwidth", and "NVLinkBandwidth".

Generated by Doxygen

176 Topic Documentation

Returns

0 on success, -1 on error.

23.28.3.4 hwloc_distances_get_by_type()

int hwloc_distances_get_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned * nr,
struct hwloc_distances_s *x distances,
unsigned long kind,
unsigned long flags)

Retrieve distance matrices for object of a specific type.

Identical to hwloc_distances_get() with the additional t ype filter.

Returns

0 on success, -1 on error.

23.28.3.5 hwloc_distances_get_name()

const char * hwloc_distances_get_name (
hwloc_topology_t topology,
struct hwloc_distances_s * distances)
Get a description of what a distances structure contains.
For instance "NUMALatency" for hardware-provided NUMA distances (ACPI SLIT), or NULL if unknown.

Returns

the constant string with the name of the distance structure.

Note

The returned name should not be freed by the caller, it belongs to the hwloc library.

23.28.3.6 hwloc_distances_release()

void hwloc_distances_release (
hwloc_topology_t topology,
struct hwloc_distances_s x distances)
Release a distance matrix structure previously returned by hwloc_distances_get().

Note

This function is not required if the structure is removed with hwloc_distances_release_remove().

23.28.3.7 hwloc_distances_transform()

int hwloc_distances_transform (
hwloc_topology_t topology,
struct hwloc_distances_s * distances,
enum hwloc_distances_transform_ e transform,
void *x transform attr,

unsigned long flags)

Generated by Doxygen

23.29 Helpers for consulting distance matrices 177

Apply a transformation to a distances structure.

Modify a distances structure that was previously obtained with hwloc_distances_get() or one of its variants.

This modifies the local copy of the distances structures but does not modify the distances information stored inside
the topology (retrieved by another call to hwloc_distances_get() or exported to XML). To do so, one should add a new
distances structure with same name, kind, objects and values (see Add distances between objects) and then remove
this old one with hwloc_distances_release_remove().

transform must be one of the transformations listed in hwloc_distances_transform_e.

These transformations may modify the contents of the objs or values arrays.

transform_attr must be NULL for now.

flags must be O for now.

Returns

0 on success, -1 on error for instance if flags are invalid.

Note

Objects in distances array objs may be directly modified in place without using hwloc_distances_transform().
One may use hwloc_get_obj_with_same_locality() to easily convert between similar objects of different types.

23.29 Helpers for consulting distance matrices

Functions

« int hwloc_distances_obj_index (struct hwloc_distances_s xdistances, hwloc_obj_t obj)
« int hwloc_distances_obj_pair_values (struct hwloc_distances_s xdistances, hwloc_obj_t obj1, hwloc_obj_t obj2,
hwloc_uint64_t xvalue1to2, hwloc_uint64_t xvalue2to1)

23.29.1 Detailed Description

23.29.2 Function Documentation
23.29.2.1 hwloc_distances_obj_index()

int hwloc_distances_obj_index (
struct hwloc_distances_s * distances,
hwloc_obj_t obj) [inline]

Find the index of an object in a distances structure.

Returns

the index of the object in the distances structure if any.

-1 if object ob 7 is not involved in structure distances.

23.29.2.2 hwloc_distances_obj_pair_values()

int hwloc_distances_obj_pair_values (
struct hwloc_distances_s * distances,
hwloc_obj_t objl,
hwloc_obij_t obj2,
hwloc_uinté64_t * valuelto2,
hwloc_uinto64_t *x valueZtol) [inline]
Find the values between two objects in a distance matrices.
The distance from obj1 to obj2 is stored in the value pointed by valuelto2 and reciprocally.

Generated by Doxygen

178 Topic Documentation

Returns

0 on success.

-1 if object olbj1 or ol 32 is not involved in structure distances.

23.30 Add distances between objects

Typedefs

+ typedef void x hwloc_distances_add_handle_t

Enumerations

« enum hwloc_distances_add_flag_e { HWLOC_DISTANCES_ADD_FLAG_GROUP , HWLOC_DISTANCES_ADD_FLAG_GROUP_|
}

Functions

» hwloc_distances_add_handle_t hwloc_distances_add_create (hwloc_topology_t topology, const char xname, un-
signed long kind, unsigned long flags)

« int hwloc_distances_add_values (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, unsigned
nbobjs, hwloc_obj_t xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« int hwloc_distances_add_commit (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, unsigned
long flags)

23.30.1 Detailed Description

The usual way to add distances is:
hwloc_distances_add_handle_t handle;
int err = -1;
handle = hwloc_distances_add_create (topology, "name", kind, 0);
1t (handle) {
err = hwloc_distances_add_values (topology, handle, nbobjs, objs, values, 0);
- (lerr)
err = hwloc_distances_add_commit (topology, handle, flags);

}
If erris O at the end, then addition was successful.

23.30.2 Typedef Documentation
23.30.2.1 hwloc_distances_add_handle_t

typedef voidx hwloc_distances_add_handle_t
Handle to a new distances structure during its addition to the topology.

23.30.3 Enumeration Type Documentation
23.30.3.1 hwloc_distances_add_flag_e

enum hwloc_distances_add_flag_e
Flags for adding a new distances to a topology.

Enumerator

HWLOC_DISTANCES_ADD_FLAG_GROUP | Try to group objects based on the newly provided
distance information. Grouping is only performed when
the distances structure contains latencies, and when all
objects are of the same type.

Generated by Doxygen

23.30 Add distances between objects 179

Enumerator

HWLOC_DISTANCES_ADD_FLAG_GROUP_+« | If grouping, consider the distance values as inaccurate
INACCURATE | and relax the comparisons during the grouping
algorithms. The actual accuracy may be modified
through the HWLOC_GROUPING_ACCURACY
environment variable (see Environment Variables).

23.30.4 Function Documentation
23.30.4.1 hwloc_distances_add_commit()

int hwloc_distances_add_commit (
hwloc_topology_t topology,
hwloc_distances_add_handle_t handle,
unsigned long flags)
Commit a new distances structure.
This function finalizes the distances structure and inserts in it the topology.
Parameter handle was previously returned by hwloc_distances_add_create(). Then objects and values were specified
with hwloc_distances_add_values().
flags configures the behavior of the function using an optional OR'ed set of hwloc_distances_add_flag_e. It may be
used to request the grouping of existing objects based on distances.
On error, the temporary distances structure and its content are destroyed.

Returns

0 on success.

-1 on error.

23.30.4.2 hwloc_distances_add_create()

hwloc_distances_add_handle_t hwloc_distances_add_create (

hwloc_topology_t topology,

const char * name,

unsigned long kind,

unsigned long flags)
Create a new empty distances structure.
Create an empty distances structure to be filled with hwloc_distances_add_values() and then committed with
hwloc_distances_add_commit().
Parameter name is optional, it may be NULL. Otherwise, it will be copied internally and may later be freed by the caller.
kind specifies the kind of distance as a OR'ed set of hwloc_distances_kind_e. Only one kind of meaning and
one kind of provenance may be given if appropriate (e.g. HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH and
HWLOC_DISTANCES_KIND_FROM_USER). Kind HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES will be
automatically set according to objects having different types in hwloc_distances_add_values().
flags must be 0 for now.

Returns

A hwloc_distances_add _handle_t that should then be passed to hwloc_distances_add_ values() and
hwloc_distances_add_commit().

NULL on error.

Generated by Doxygen

180 Topic Documentation

23.30.4.3 hwloc_distances_add_values()

int hwloc_distances_add_values (
hwloc_topology_t topology,
hwloc_distances_add_handle_t handle,
unsigned nbobjs,
hwloc_obij_t * objs,
hwloc_uinté64_t * values,
unsigned long flags)
Specify the objects and values in a new empty distances structure.
Specify the objects and values for a new distances structure that was returned as a handle by hwloc_distances_add_create().
The structure must then be committed with hwloc_distances_add_commit().
The number of objects is nbob js and the array of objects is ob js. Distance values are stored as a one-dimension
array in values. The distance from object i to object j is in slot ixnbobjs+j.
nbob js must be at least 2.
Arrays objs and values will be copied internally, they may later be freed by the caller.
On error, the temporary distances structure and its content are destroyed.
flags must be 0 for now.

Returns

0 on success.
-1 on error.

23.31 Remove distances between objects

Functions

« int hwloc_distances_remove (hwloc_topology_t topology)

« int hwloc_distances_remove_by_depth (hwloc_topology_t topology, int depth)

« int hwloc_distances_remove_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_distances_release_remove (hwloc_topology_t topology, struct hwloc_distances_s *distances)

23.31.1 Detailed Description

23.31.2 Function Documentation
23.31.2.1 hwloc_distances_release_remove()

int hwloc_distances_release_remove (

hwloc_topology_t topology,

struct hwloc_distances_s *x distances)
Release and remove the given distance matrice from the topology.
This function includes a call to hwloc_distances_release().

Returns

0 on success, -1 on error.

23.31.2.2 hwloc_distances_remove()

int hwloc_distances_remove (
hwloc_topology_t topology)
Remove all distance matrices from a topology.
Remove all distance matrices, either provided by the user or gathered through the OS.
If these distances were used to group objects, these additional Group objects are not removed from the topology.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 181

Returns

0 on success, -1 on error.

23.31.2.3 hwloc_distances_remove_by_depth()

int hwloc_distances_remove_by_depth (
hwloc_topology_t topology,
int depth)
Remove distance matrices for objects at a specific depth in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

23.31.2.4 hwloc_distances_remove_by type()

int hwloc_distances_remove_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Remove distance matrices for objects of a specific type in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

23.32 Comparing memory node attributes for finding where to allocate on

Data Structures

« struct hwloc_location

Typedefs

« typedef unsigned hwloc_memattr_id_t

Enumerations

* enum hwloc_memattr_id_e {
HWLOC_MEMATTR_ID _CAPACITY ,HWLOC_MEMATTR_ID LOCALITY ,HWLOC MEMATTR_ID_BANDWIDTH
, HWLOC_MEMATTR_ID_READ_BANDWIDTH ,
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH , HWLOC_MEMATTR_ID_LATENCY , HWLOC_ MEMATTR_ID_READ_LATENCY
, HWLOC_MEMATTR_ID_WRITE_LATENCY ,
HWLOC_MEMATTR_ID_MAX}
+ enum hwloc_location_type_e { HWLOC_LOCATION_TYPE_CPUSET , HWLOC_LOCATION_TYPE_OBJECT }
« enum hwloc_local_numanode_flag_e { HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY , HWLOC_LOCAL_NUMANO
, HWLOC LOCAL_NUMANODE_FLAG_INTERSECT_ LOCALITY , HWLOC LOCAL_NUMANODE_FLAG_ALL
!

Functions

« int hwloc_memattr_get_by_name (hwloc_topology_t topology, const char xname, hwloc_memattr_id_t *id)
« int hwloc_get_local_numanode_objs (hwloc_topology_t topology, struct hwloc_location xlocation, unsigned xnr,
hwloc_obj_t «nodes, unsigned long flags)

Generated by Doxygen

182 Topic Documentation

« int hwloc_topology get_default_nodeset (hwloc_topology_t topology, hwloc_nodeset_t nodeset, unsigned long
flags)

* int hwloc_memattr_get_value (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target_«
node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64_t xvalue)

» int hwloc_memattr_get_best_target (hwloc_topology_t topology, hwloc_memattr_id_t attribute, struct
hwloc_location xinitiator, unsigned long flags, hwloc_obj_t xbest_target, hwloc_uint64_t xvalue)

+ int hwloc_memattr_get_best_initiator (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj t
target_node, unsigned long flags, struct hwloc_location xbest_initiator, hwloc_uint64_t xvalue)

« int hwloc_memattr_get_targets (hwloc_topology_t topology, hwloc_memattr_id_t attribute, struct hwloc_location
xinitiator, unsigned long flags, unsigned xnr, hwloc_obj_t xtargets, hwloc_uint64_t xvalues)

« int hwloc_memattr_get_initiators (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target«
_node, unsigned long flags, unsigned xnr, struct hwloc_location xinitiators, hwloc_uint64_t xvalues)

23.32.1 Detailed Description

Platforms with heterogeneous memory require ways to decide whether a buffer should be allocated on "fast" memory
(such as HBM), "normal" memory (DDR) or even "slow" but large-capacity memory (non-volatile memory). These
memory nodes are called "Targets" while the CPU accessing them is called the "Initiator". Access performance depends
on their locality (NUMA platforms) as well as the intrinsic performance of the targets (heterogeneous platforms).

The following attributes describe the performance of memory accesses from an Initiator to a memory Target, for instance
their latency or bandwidth. Initiators performing these memory accesses are usually some PUs or Cores (described as
a CPU set). Hence a Core may choose where to allocate a memory buffer by comparing the attributes of different target
memory nodes nearby.

There are also some attributes that are system-wide. Their value does not depend on a specific initiator performing an
access. The memory node Capacity is an example of such attribute without initiator.

One way to use this APl is to start with a cpuset describing the Cores where a program is bound. The best target NUMA
node for allocating memory in this program on these Cores may be obtained by passing this cpuset as an initiator to
hwloc_memattr_get_best_target() with the relevant memory attribute. For instance, if the code is latency limited, use
the Latency attribute.

A more flexible approach consists in getting the list of local NUMA nodes by passing this cpuset to hwloc_get_local_numanode_objs().
Attribute values for these nodes, if any, may then be obtained with hwloc_memattr_get_value() and manually compared
with the desired criteria.

Memory attributes are also used internally to build Memory Tiers which provide an easy way to distinguish NUMA nodes
of different kinds, as explained in Heterogeneous Memory.

Beside tiers, hwloc defines a set of "default" nodes where normal memory allocations should be made from (see
hwloc_topology_get_default_nodeset()). This is also useful for dividing the machine into a set of non-overlapping NUMA
domains, for instance for binding tasks per domain.

See also

An example is available in doc/examples/memory-attributes.c in the source tree.

Note

The API also supports specific objects as initiator, but it is currently not used internally by hwloc. Users may for
instance use it to provide custom performance values for host memory accesses performed by GPUs.

The interface actually also accepts targets that are not NUMA nodes.

23.32.2 Typedef Documentation
23.32.2.1 hwloc_memattr_id t

typedef unsigned hwloc_memattr_id_t
A memory attribute identifier.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on

183

hwloc predefines some commonly-used attributes in hwloc_memattr_id_e. One may then dynamically register cus-

tom ones with hwloc_memattr_register(), they will be assigned IDs immediately after the predefined ones.

See

Managing memory attributes for more information about existing attribute IDs.

23.32.3 Enumeration Type Documentation
23.32.3.1 hwloc_local_numanode_flag_e

enum hwloc_local_numanode_flag_e

Flags for selecting target NUMA nodes.

Enumerator

HWLOC_LOCAL _NUMANODE_FLAG LARGER «
LOCALITY

Select NUMA nodes whose locality is larger than the
given cpuset. For instance, if a single PU (or its cpuset)
isgivenin initiator, select all nodes close to the
package that contains this PU.

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER «-
LOCALITY

Select NUMA nodes whose locality is smaller than the
given cpuset. For instance, if a package (or its cpuset)
isgivenin initiator, also select nodes that are
attached to only a half of that package.

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT«-
_LOCALITY

\breif Select NUMA nodes whose locality intersects the
given cpuset. This includes larger and smaller localities
as well as localities that are partially included. For
instance, if the locality is one core of both packages, a
NUMA node local to one package is neither larger nor
smaller than this locality, but it intersects it.

HWLOC_LOCAL_NUMANODE_FLAG_ALL

Select all NUMA nodes in the topology. The initiator
initiator isignored.

23.32.3.2 hwloc_location_type_e

enum hwloc_location_type_e
Type of location.

Enumerator

HWLOC_LOCATION_TYPE_CPUSET

Location is given as a cpuset, in the location cpuset union field.

HWLOC_LOCATION_TYPE_OBJECT

Location is given as an object, in the location object union field.

23.32.3.3 hwloc_memattr_id_e

enum hwloc_memattr_id_e

Predefined memory attribute IDs. See hwloc_memattr_id_t for the generic definition of IDs for predefined or custom

attributes.

Generated by Doxygen

184

Topic Documentation

Enumerator

HWLOC_MEMATTR_ID_CAPACITY

The "Capacity" is returned in bytes (local_memory attribute in
objects). Best capacity nodes are nodes with higher capacity.
No initiator is involved when looking at this attribute. The
corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Capacity values may not be modified using
hwloc_memattr_set_value().

HWLOC_MEMATTR_ID_LOCALITY

The "Locality" is returned as the number of PUs in that locality
(e.g. the weight of its cpuset). Best locality nodes are nodes
with smaller locality (nodes that are local to very few PUs).
Poor locality nodes are nodes with larger locality (nodes that are
local to the entire machine).

No initiator is involved when looking at this attribute. The
corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Locality values may not be modified using
hwloc_memattr_set_value().

HWLOC_MEMATTR_ID_BANDWIDTH

The "Bandwidth" is returned in MiB/s, as seen from the given
initiator location. Best bandwidth nodes are nodes with higher
bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average bandwidth for read and write accesses. If the
platform provides individual read and write bandwidths but no
explicit average value, hwloc computes and returns the average.

HWLOC_MEMATTR_ID_READ_BANDWIDTH

The "ReadBandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes with
higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_WRITE_BANDWIDTH

The "WriteBandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes with
higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_LATENCY

The "Latency" is returned as nanoseconds, as seen from the
given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average latency for read and write accesses. If the
platform provides individual read and write latencies but no
explicit average value, hwloc computes and returns the average.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 185

Enumerator

HWLOC_MEMATTR_ID_READ_LATENCY | The "ReadLatency" is returned as nanoseconds, as seen from
the given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.
HWLOC_MEMATTR_ID_WRITE_LATENCY | The "WriteLatency" is returned as nanoseconds, as seen from
the given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

23.32.4 Function Documentation
23.32.4.1 hwloc_get_local_numanode_objs()

int hwloc_get_local_numanode_objs (

hwloc_topology_t topology,

struct hwloc_location * location,

unsigned * nr,

hwloc_obj_t * nodes,

unsigned long flags)
Return an array of local NUMA nodes.
By default only select the NUMA nodes whose locality is exactly the given 1ocat ion. More nodes may be selected if
additional flags are given as a OR'ed set of hwloc_local_numanode_flag_e.
If location is given as an explicit object, its CPU set is used to find NUMA nodes with the corresponding locality. If
the object does not have a CPU set (e.g. I/0O object), the CPU parent (where the I/O object is attached) is used.
On input, nr points to the number of nodes that may be stored in the nodes array. On output, nr will be changed to
the number of stored nodes, or the number of nodes that would have been stored if there were enough room.

Returns

0 on success or -1 on error.

Note

Some of these NUMA nodes may not have any memory attribute values and hence not be reported as actual
targets in other functions.

The number of NUMA nodes in the topology (obtained by hwloc_bitmap_weight() on the root object nodeset) may
be used to allocate the nodes array.

When an object CPU set is given as locality, for instance a Package, and when flags contain both
HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY and HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY,
the returned array corresponds to the nodeset of that object.

23.32.4.2 hwloc_memattr_get_best_initiator()

int hwloc_memattr_get_best_initiator (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,

hwloc_obj_t target_node,

Generated by Doxygen

186 Topic Documentation

unsigned long flags,

struct hwloc_location *x best_initiator,

hwloc_uint64_t *x value)
Return the best initiator for the given attribute and target NUMA node.
If value is non NULL, the corresponding value is returned there.
If multiple initiators have the same attribute values, only one is returned (and there is no way to clarify how that one is
chosen). Applications that want to detect initiators with identical/similar values, or that want to look at values for multiple
attributes, should rather get all values using hwloc_memattr_get_value() and manually select the initiator they consider
the best.
The returned initiator should not be modified or freed, it belongs to the topology.
target_node cannot be NULL.
flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching initiators.

-1 with errno set to EINVAL if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR).

23.32.4.3 hwloc_memattr_get_best_target()

int hwloc_memattr_get_best_target (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

struct hwloc_location * initiator,

unsigned long flags,

hwloc_obij_t *x best_target,

hwloc_uinto64_t *x value)
Return the best target NUMA node for the given attribute and initiator.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.
If value is non NULL, the corresponding value is returned there.
If multiple targets have the same attribute values, only one is returned (and there is no way to clarify how that one is
chosen). Applications that want to detect targets with identical/similar values, or that want to look at values for multiple
attributes, should rather get all values using hwloc_memattr_get_value() and manually select the target they consider
the best.
flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching targets.

-1 with errno set to EINVAL if flags are invalid, or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

Generated by Doxygen

23.32 Comparing memory node attributes for finding where to allocate on 187

23.32.4.4 hwloc_memattr_get_by name()

int hwloc_memattr_get_by_name (
hwloc_topology_t topology,
const char * name,
hwloc_memattr_id_t * id)
Return the identifier of the memory attribute with the given name.

Returns

0 on success.

-1 with errno set to EINVAL if no such attribute exists.

23.32.4.5 hwloc_memattr_get_initiators()

int hwloc_memattr_get_initiators (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

hwloc_obj_t target_node,

unsigned long flags,

unsigned * nr,

struct hwloc_location * initiators,

hwloc_uinté64_t * values)
Return the initiators that have values for a given attribute for a specific target NUMA node.
Return initiators for the given attribute and target node in the initiators array. If values is not NULL, the corre-
sponding attribute values are stored in the array it points to.
On input, nr points to the number of initiators that may be stored in the array initiators (and values). On output,
nr points to the number of initiators (and values) that were actually found, even if some of them couldn't be stored in
the array. Initiators that couldn't be stored are ignored, but the function still returns success (0). The caller may find out
by comparing the value pointed by nr before and after the function call.
The returned initiators should not be modified or freed, they belong to the topology.
target_node cannot be NULL.
flags must be 0 for now.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED _INITIATOR),
no initiator is returned.

Returns

0 on success or -1 on error.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look at
their attribute values for some relevant initiators.

23.32.4.6 hwloc_memattr_get_targets()

int hwloc_memattr_get_targets (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
struct hwloc_location *x initiator,
unsigned long flags,
unsigned * nr,
hwloc_obj_t * targets,

hwloc_uinto64_t *x values)

Generated by Doxygen

188 Topic Documentation

Return the target NUMA nodes that have some values for a given attribute.

Return targets for the given attribute in the targets array (for the given initiator if any). If values is not NULL, the
corresponding attribute values are stored in the array it points to.

On input, nr points to the number of targets that may be stored in the array targets (and values). On output, nr
points to the number of targets (and values) that were actually found, even if some of them couldn't be stored in the
array. Targets that couldn't be stored are ignored, but the function still returns success (0). The caller may find out by
comparing the value pointed by nr before and after the function call.

The returned targets should not be modified or freed, they belong to the topology.

Argument initiator is ignored if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR). Otherwise initiator may be non NULL to report only targets
that have a value for that initiator.

flags mustbe 0 for now.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look at
their attribute values.

Returns

0 on success or -1 on error.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

23.32.4.7 hwloc_memattr_get_value()

int hwloc_memattr_get_value (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obij_t target_node,
struct hwloc_location x initiator,
unsigned long flags,
hwloc_uint64_t *x value)
Return an attribute value for a specific target NUMA node.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.
target_node cannot be NULL. If att ribute is HWLOC_MEMATTR_ID_CAPACITY, target_node must be a
NUMA node. If it is HWLOC_MEMATTR_ID_LOCALITY, target_node must have a CPU set.
flags must be 0 for now.

Returns

0 on success.

-1 on error, for instance with errno set to EINVAL if flags are invalid or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

Generated by Doxygen

23.33 Managing memory attributes 189

23.32.4.8 hwloc_topology_get_default_nodeset()

int hwloc_topology_get_default_nodeset (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

unsigned long flags)
Return the set of default NUMA nodes.
In machines with heterogeneous memory, some NUMA nodes are considered the default ones, i.e. where basic alloca-
tions should be made from. These are usually DRAM nodes.
Other nodes may be reserved for specific use (I/O device memory, e.g. GPU memory), small but high performance
(HBM), large but slow memory (NVM), etc. Buffers should usually not be allocated from there unless explicitly required.
This function fills nodeset with the bits of NUMA nodes considered default.
It is guaranteed that these nodes have non-intersecting CPU sets, i.e. cores may not have multiple local NUMA nodes
anymore. Hence this may be used to iterate over the platform divided into separate NUMA localities, for instance for
binding one task per NUMA domain.
Any core that had some local NUMA node(s) in the initial topology should still have one in the default nodeset. Corner
cases where this would be wrong consist in asymmetric platforms with missing DRAM nodes, or topologies that were
already restricted to less NUMA nodes.
The returned nodeset may be passed to hwloc_topology_restrict() with HWLOC_RESTRICT_FLAG_BYNODESET to
remove all non-default nodes from the topology. The resulting topology will be easier to use when iterating over (now
homogeneous) NUMA nodes.
The heuristics for finding default nodes relies on memory tiers and subtypes (see Heterogeneous Memory) as well as
the assumption that hardware vendors list default nodes first in hardware tables.
flags must be 0 for now.

Returns

0 on success.

-1 on error.

Note

The returned nodeset usually contains all nodes from a single memory tier, likely the DRAM one.

The returned nodeset is included in the list of available nodes returned by hwloc_topology get_topology_nodeset().
It is strictly smaller if the machine has heterogeneous memory.

The heuristics may return a suboptimal set of nodes if hwloc could not guess memory types and/or if some default
nodes were removed earlier from the topology (e.g. with hwloc_topology_restrict()).

23.33 Managing memory attributes

Enumerations

« enum hwloc_memattr_flag_e { HWLOC_MEMATTR_FLAG_HIGHER_FIRST = (1UL<<0) , HWLOC_MEMATTR_FLAG_LOWER_F
= (1UL<<1) , HWLOC_MEMATTR_FLAG_NEED_INITIATOR = (1UL<<2) }

Functions

« int hwloc_memattr_get_name (hwloc_topology_t topology, hwloc_memattr_id_t attribute, const char xxname)

« int hwloc_memattr_get_flags (hwloc_topology_t topology, hwloc_memattr_id_t attribute, unsigned long *flags)

« inthwloc_memattr_register (hwloc_topology_t topology, const char xname, unsigned long flags, hwloc_memattr_id_t
*id)

« int hwloc_memattr_set value (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target_«
node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64._t value)

Generated by Doxygen

190 Topic Documentation

23.33.1 Detailed Description

Memory attribues are identified by an ID (hwloc_memattr_id_t) and a name. hwloc_memattr_get_name() and
hwloc_memattr_get_by_name() convert between them (or return error if the attribute does not exist).

The set of valid hwloc_memattr_id_t is a contigous set starting at 0. It first contains predefined attributes, as listed
in hwloc_memattr_id_e (from 0 to HWLOC_MEMATTR_ID_MAX-1). Then custom attributes may be dynamically reg-
istered with hwloc_memattr_register(). They will get the following IDs (HWLOC_MEMATTR_ID_MAX for the first one,
etc.).

To iterate over all valid attributes (either predefined or dynamically registered custom ones), one may iterate over IDs
starting from 0 until hwloc_memattr_get_name() or hwloc_memattr_get_flags() returns an error.

The values for an existing attribute or for custom dynamically registered ones may be set or modified with
hwloc_memattr_set_value().

23.33.2 Enumeration Type Documentation
23.33.2.1 hwloc_memattr_flag_e

enum hwloc_memattr_flag_e
Memory attribute flags. Given to hwloc_memattr_register() and returned by hwloc_memattr_get_flags().

Enumerator

HWLOC_MEMATTR_FLAG_HIGHER_FIRST | The best nodes for this memory attribute are those with the
higher values. For instance Bandwidth.

HWLOC_MEMATTR_FLAG_LOWER_FIRST | The best nodes for this memory attribute are those with the
lower values. For instance Latency.
HWLOC_MEMATTR_FLAG_NEED_INITIATOR | The value returned for this memory attribute depends on the

given initiator. For instance Bandwidth and Latency, but not
Capacity.

23.33.3 Function Documentation
23.33.3.1 hwloc_memattr_get_flags()

int hwloc_memattr_get_flags (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
unsigned long * flags)

Return the flags of the given attribute.

Flags are a OR'ed set of hwloc_memattr_flag_e.

The output pointer £1ags cannot be NULL.

Returns

0 on success.
-1 with errno set to EINVAL if the attribute does not exist.

23.33.3.2 hwloc_memattr_get_name()

int hwloc_memattr_get_name (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
const char **x name)

Return the name of a memory attribute.

The output pointer name cannot be NULL.

Generated by Doxygen

23.33 Managing memory attributes 191

Returns

0 on success.

-1 with errno set to EINVAL if the attribute does not exist.

23.33.3.3 hwloc_memattr_register()

int hwloc_memattr_register (

hwloc_topology_t topology,

const char * name,

unsigned long flags,

hwloc_memattr_id_t *x id)
Register a new memory attribute.
Add a new custom memory attribute. Flags are a OR'ed set of hwloc_memattr_flag_e. It must contain one of
HWLOC_MEMATTR_FLAG_HIGHER_FIRST or HWLOC_MEMATTR_FLAG_LOWER_FIRST but not both.
The new attribute 1d is immediately after the last existing attribute ID (which is either the ID of the last registered
attribute if any, or the ID of the last predefined attribute in hwloc_memattr_id_e).

Returns

0 on success.
-1 with errno set to EINVAL if an invalid set of flags is given.

-1 with errno set to EBUSY if another attribute already uses this name.

23.33.3.4 hwloc_memattr_set_value()

int hwloc_memattr_set_value (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

hwloc_obj_t target_node,

struct hwloc_location * initiator,

unsigned long flags,

hwloc_uint64_t value)
Set an attribute value for a specific target NUMA node.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED _INITIATOR),
location initiator isignored and may be NULL.
The initiator will be copied into the topology, the caller should free anything allocated to store the initiator, for instance
the cpuset.
target_node cannot be NULL.
attribute cannot be ::HWLOC_MEMATTR_FLAG_ID_CAPACITY or ::HWLOC_MEMATTR_FLAG_ID_LOCALITY.
flags must be O for now.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

Returns

0 on success or -1 on error.

Generated by Doxygen

192 Topic Documentation

23.34 Kinds of CPU cores

Functions

« int hwloc_cpukinds_get_nr (hwloc_topology_t topology, unsigned long flags)

« int hwloc_cpukinds_get_by_cpuset (hwloc_topology_t topology, hwloc_const_bitmap_t cpuset, unsigned long
flags)

+ int hwloc_cpukinds_get_info (hwloc_topology_t topology, unsigned kind_index, hwloc_bitmap_t cpuset, int
xefficiency, unsigned xnr_infos, struct hwloc_info_s xxinfos, unsigned long flags)

« int hwloc_cpukinds_register (hwloc_topology_t topology, hwloc_bitmap_t cpuset, int forced_efficiency, unsigned
nr_infos, struct hwloc_info_s xinfos, unsigned long flags)

23.34.1 Detailed Description

Platforms with heterogeneous CPUs may have some cores with different features or frequencies. This APl exposes
identical PUs in sets called CPU kinds. Each PU of the topology may only be in a single kind.

The number of kinds may be obtained with hwloc_cpukinds_get_nr(). If the platform is homogeneous, there may be a
single kind with all PUs. If the platform or operating system does not expose any information about CPU cores, there
may be no kind at all.

The index of the kind that describes a given CPU set (if any, and not partially) may be obtained with
hwloc_cpukinds_get_by_cpuset().

From the index of a kind, it is possible to retrieve information with hwloc_cpukinds_get_info(): an abstracted efficiency
value, and an array of info attributes (for instance the "CoreType" and "FrequencyMaxMHz", see CPU Kinds).

A higher efficiency value means greater intrinsic performance (and possibly less performance/power efficiency). Kinds
with lower efficiency values are ranked first: Passing 0 as kind_index to hwloc_cpukinds_get_info() will return
information about the CPU kind with lower performance but higher energy-efficiency. Higher kind_index values
would rather return information about power-hungry high-performance cores.

When available, efficiency values are gathered from the operating system. If so, cpukind_efficiency issetinthe
struct hwloc_topology_discovery_support array. This is currently available on Windows 10, Mac OS X (Darwin), and on
some Linux platforms where core "capacity" is exposed in sysfs.

If the operating system does not expose core efficiencies natively, hwloc tries to compute efficiencies by comparing CPU
kinds using frequencies (on ARM), or core types and frequencies (on other architectures). The environment variable
HWLOC_CPUKINDS_RANKING may be used to change this heuristics, see Environment Variables.

If hwloc fails to rank any kind, for instance because the operating system does not expose efficiencies and core frequen-
cies, all kinds will have an unknown efficiency (—1), and they are not indexed/ordered in any specific way.

23.34.2 Function Documentation
23.34.2.1 hwloc_cpukinds_get_by_cpuset()

int hwloc_cpukinds_get_by_cpuset (
hwloc_topology_t topology,
hwloc_const_bitmap_t cpuset,
unsigned long flags)
Get the index of the CPU kind that contains CPUs listed in cpuset.
flags must be O for now.

Returns

The index of the CPU kind (positive integer or 0) on success.
-1 with errno set to EXDEV if cpuset is only partially included in the some kind.
-1 with errno set to ENOENT if cpuset is not included in any kind, even partially.

-1 with errno set to EINVAL if parameters are invalid.

Generated by Doxygen

23.34 Kinds of CPU cores 193

23.34.2.2 hwloc_cpukinds_get_info()

int hwloc_cpukinds_get_info (

hwloc_topology_t topology,

unsigned kind_index,

hwloc_bitmap_t cpuset,

int % efficiency,

unsigned * nr_infos,

struct hwloc_info_s %% infos,

unsigned long flags)
Get the CPU set and infos about a CPU kind in the topology.
kind_index identifies one kind of CPU between 0 and the number of kinds returned by hwloc_cpukinds_get_nr()
minus 1.
If not NULL, the bitmap cpuset will be filled with the set of PUs of this kind.
The integer pointed by ef ficiency, if not NULL will, be filled with the ranking of this kind of CPU in term of efficiency
(see above). It ranges from 0 to the number of kinds (as reported by hwloc_cpukinds_get_nr()) minus 1.
Kinds with lower efficiency are reported first.
If there is a single kind in the topology, its efficiency 0. If the efficiency of some kinds of cores is unknown, the efficiency
of all kinds is set to —1, and kinds are reported in no specific order.
The array of info attributes (for instance the "CoreType", "FrequencyMaxMHz" or "FrequencyBaseMHz", see CPU Kinds)
and its length are returned in infos or nr_infos. The array belongs to the topology, it should not be freed or
modified.
Ifnr_infosorinfos is NULL, no info is returned.
flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if kind_index does not match any CPU kind.

-1 with errno set to EINVAL if parameters are invalid.

23.34.2.3 hwloc_cpukinds_get_nr()

int hwloc_cpukinds_get_nr (

hwloc_topology_t topology,

unsigned long flags)
Get the number of different kinds of CPU cores in the topology.
flags must be 0 for now.

Returns

The number of CPU kinds (positive integer) on success.
0 if no information about kinds was found.

-1 with errno setto EINVAL if f1ags is invalid.

23.34.2.4 hwloc_cpukinds_register()

int hwloc_cpukinds_register (
hwloc_topology_t topology,
hwloc_bitmap_t cpuset,
int forced efficiency,
unsigned nr_infos,
struct hwloc_info_s * infos,

unsigned long flags)

Generated by Doxygen

194 Topic Documentation

Register a kind of CPU in the topology.

Mark the PUs listed in cpuset as being of the same kind with respect to the given attributes.
forced_efficiency should be -1 if unknown. Otherwise it is an abstracted efficiency value to enforce the ranking
of all kinds if all of them have valid (and different) efficiencies.

The array infos of size nr__infos may be used to provide info names and values describing this kind of PUs.
flags must be 0 for now.

Parameters cpuset and infos will be duplicated internally, the caller is responsible for freeing them.

If cpuset overlaps with some existing kinds, those might get modified or split. For instance if existing kind A contains
PUs 0 and 1, and one registers another kind for PU 1 and 2, there will be 3 resulting kinds: existing kind A is restricted
to only PU 0; new kind B contains only PU 1 and combines information from A and from the newly-registered kind; new
kind C contains only PU 2 and only gets information from the newly-registered kind.

Note

The efficiency forced_efficiency provided to this function may be different from the one reported later by
hwloc_cpukinds_get_info() because hwloc will scale efficiency values down to between 0 and the number of kinds
minus 1.

Returns

0 on success.
-1 with errno set to EINVAL if some parameters are invalid, for instance if cpuset is NULL or empty.

23.35 Linux-specific helpers

Functions

« int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)

« int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t set)

« int hwloc_linux_get_tid_last_cpu_location (hwloc_topology_t topology, pid_t tid, hwloc_bitmap_t set)
+ int hwloc_linux_read_path_as_cpumask (const char xpath, hwloc_bitmap_t set)

23.35.1 Detailed Description

This includes helpers for manipulating Linux kernel cpumap files, and hwloc equivalents of the Linux sched_setaffinity
and sched_getaffinity system calls.

23.35.2 Function Documentation
23.35.2.1 hwloc_linux_get_tid_cpubind()

int hwloc_linux_get_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_cpuset_t set)
Get the current binding of thread t id.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound to.
The behavior is exactly the same as the Linux sched_getaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note
This is equivalent to calling hwloc_get_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

Generated by Doxygen

23.36 Interoperability with Linux libnuma unsigned long masks

195

23.35.2.2 hwloc_linux_get_tid_last_cpu_location()

int hwloc_linux_get_tid_last_cpu_location (
hwloc_topology_t topology,
pid_t tid,
hwloc_bitmap_t set)
Get the last physical CPU where thread t id ran.
The CPU-set set (previously allocated by the caller) is filled with the PU which the thread last ran on.

Returns

0 on success, -1 on error.

Note

This is equivalent to calling hwloc_get_proc_last_cpu_location() with HWLOC_CPUBIND_THREAD as flags.

23.35.2.3 hwloc_linux_read_path_as_cpumask()

int hwloc_linux_read_path_as_cpumask (
const char *x path,
hwloc_bitmap_t set)
Convert a linux kernel cpumask file path into a hwloc bitmap set.

Might be used when reading CPU set from sysfs attributes such as topology and caches for processors, or local_cpus

for devices.

Returns

0 on success, -1 on error.

Note

This function ignores the HWLOC_FSROOT environment variable.

23.35.2.4 hwloc_linux_set_tid_cpubind()

int hwloc_linux_set_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_const_cpuset_t set)
Bind a thread t 1d on cpus given in cpuset set.
The behavior is exactly the same as the Linux sched_setaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note

This is equivalent to calling hwloc_set_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

23.36 Interoperability with Linux libnuma unsigned long masks

Functions

« int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, unsigned

long *mask, unsigned long *maxnode)

Generated by Doxygen

196 Topic Documentation

« int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, un-
signed long xmask, unsigned long xmaxnode)

« int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const un-
signed long *mask, unsigned long maxnode)

+ int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const un-
signed long xmask, unsigned long maxnode)

23.36.1 Detailed Description
This interface helps converting between Linux libnuma unsigned long masks and hwloc cpusets and nodesets.

Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in the
kernel configuration). This helper and libnuma may thus not be strictly compatible in this case, which may be
detected by checking whether numa_available() returns -1.

23.36.2 Function Documentation
23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()

int hwloc_cpuset_from_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_cpuset_t cpuset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long mask into hwloc CPU set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read in
mask.
This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Returns

0 on success.

-1 on error, for instance if failing an internal reallocation.

23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()

int hwloc_cpuset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_cpuset_t cpuset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc CPU set cpuset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored
in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array
of unsigned long and a maximal node number as input parameter.

Returns

0.

Generated by Doxygen

23.37 Interoperability with Linux libnuma bitmask 197

23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()

int hwloc_nodeset_from_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long ma sk into hwloc NUMA node set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read in
mask.
This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

int hwloc_nodeset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_nodeset_t nodeset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc NUMA node set nodeset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored
in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array
of unsigned long and a maximal node number as input parameter.

Returns

0.

23.37 Interoperability with Linux libnuma bitmask

Functions

« struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_cpuset._t
cpuset)

+ struct bitmask * hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_nodeset_t
nodeset)

« int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const struct
bitmask xbitmask)

« int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_nodeset t nodeset, const
struct bitmask *bitmask)

23.37.1 Detailed Description

This interface helps converting between Linux libnuma bitmasks and hwloc cpusets and nodesets.

Generated by Doxygen

198 Topic Documentation

Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in the
kernel configuration). This helper and libnuma may thus not be strictly compatible in this case, which may be
detected by checking whether numa_available() returns -1.

23.37.2 Function Documentation
23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()

int hwloc_cpuset_from linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_cpuset_t cpuset,
const struct bitmask * bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc CPU set cpuset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.
-1 with errno set to ENOMEM if some internal reallocation failed.

23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()

struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_cpuset_t cpuset) [inline]
Convert hwloc CPU set cpuset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Returns

newly allocated struct bitmask, or NULL on error.

23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()

int hwloc_nodeset_from_linux_libnuma_pbitmask (
hwloc_topology_t topology,
hwloc_nodeset_t nodeset,
const struct bitmask * bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc NUMA node set nodeset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.
-1 with errno set to ENOMEM if some internal reallocation failed.

23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

struct bitmask *x hwloc_nodeset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_nodeset_t nodeset) [inline]
Convert hwloc NUMA node set nodeset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Generated by Doxygen

23.38 Windows-specific helpers 199

Returns

newly allocated struct bitmask, or NULL on error.

23.38 Windows-specific helpers

Functions

« int hwloc_windows_get_nr_processor_groups (hwloc_topology_t topology, unsigned long flags)
« inthwloc_windows_get_processor_group_cpuset (hwloc_topology_t topology, unsigned pg_index, hwloc_cpuset_t
cpuset, unsigned long flags)

23.38.1 Detailed Description

These functions query Windows processor groups. These groups partition the operating system into virtual sets of up
to 64 neighbor PUs. Threads and processes may only be bound inside a single group. Although Windows processor
groups may be exposed in the hwloc hierarchy as hwloc Groups, they are also often merged into existing hwloc objects
such as NUMA nodes or Packages. This API provides explicit information about Windows processor groups so that
applications know whether binding to a large set of PUs may fail because it spans over multiple Windows processor
groups.

23.38.2 Function Documentation
23.38.2.1 hwloc_windows_get_nr_processor_groups()

int hwloc_windows_get_nr_processor_groups (
hwloc_topology_t topology,
unsigned long flags)

Get the number of Windows processor groups.

flags must be 0 for now.

Returns

at least 1 on success.

-1 on error, for instance if the topology does not match the current system (e.g. loaded from another machine
through XML).

23.38.2.2 hwloc_windows_get_processor_group_cpuset()

int hwloc_windows_get_processor_group_cpuset (
hwloc_topology_t topology,
unsigned pg_index,
hwloc_cpuset_t cpuset,
unsigned long flags)
Get the CPU-set of a Windows processor group.
Get the set of PU included in the processor group specified by pg_index. pg_index must be between 0 and the
value returned by hwloc_windows_get_nr_processor_groups() minus 1.
flags must be 0 for now.

Returns

0 on success.

-1 on error, for instance if pg__index is invalid, or if the topology does not match the current system (e.g. loaded
from another machine through XML).

Generated by Doxygen

200 Topic Documentation

23.39 Interoperability with glibc sched affinity

Functions

« int hwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_t topology, hwloc_const_cpuset_t hwlocset, cpu_set«
_t xschedset, size_t schedsetsize)

« int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology, hwloc_cpuset_t hwlocset, const cpu_+«
set_t xschedset, size_t schedsetsize)

23.39.1 Detailed Description

This interface offers ways to convert between hwloc cpusets and glibc cpusets such as those manipulated by sched_«
getaffinity() or pthread_attr_setaffinity_np().

Note

Topology topology must match the current machine.

23.39.2 Function Documentation
23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()

int hwloc_cpuset_from glibc_sched_ affinity (
hwloc_topology_t topology,
hwloc_cpuset_t hwlocset,
const cpu_set_t *x schedset,
size_t schedsetsize) [inline]
Convert glibc sched affinity CPU set schedset into hwloc CPU set.
This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input param-
eter.
schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

int hwloc_cpuset_to_glibc_sched_affinity (
hwloc_topology_t topology,
hwloc_const_cpuset_t hwlocset,
cpu_set_t * schedset,
size_t schedsetsize) [inline]
Convert hwloc CPU set toposet into glibc sched affinity CPU set schedset.
This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input param-
eter.
schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Generated by Doxygen

23.40 Interoperability with OpenCL 201

Returns

0.

23.40 Interoperability with OpenCL

Functions

« int hwloc_opencl_get_device_pci_busid (cl_device_id device, unsigned xdomain, unsigned xbus, unsigned *dev,
unsigned *func)

« int hwloc_opencl_get_device_cpuset (hwloc_topology_t topology, cl_device_id device, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (hwloc_topology t topology, unsigned platform_index,
unsigned device_index)

» hwloc_obj_t hwloc_opencl_get_device_osdev (hwloc_topology_t topology, cl_device_id device)

23.40.1 Detailed Description

This interface offers ways to retrieve topology information about OpenCL devices.
Only AMD and NVIDIA OpenCL implementations currently offer useful locality information about their devices.

23.40.2 Function Documentation
23.40.2.1 hwloc_opencl_get_device_cpuset()

int hwloc_opencl_get_device_cpuset (

hwloc_topology_t topology,

cl_device_id device,

hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to OpenCL device device.
Store in set the CPU-set describing the locality of the OpenCL device device.
Topology topology and device device must match the local machine. 1/O devices detection and the OpenCL
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_opencl_get_device_osdev() and hwloc_opencl_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux with the AMD or NVIDIA OpenCL implemen-
tation; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if the device could not be found.

23.40.2.2 hwloc_opencl_get_device_osdev()

hwloc_obj_t hwloc_opencl_get_device_osdev (
hwloc_topology_t topology,
cl_device_id device) [inline]
Get the hwloc OS device object corresponding to OpenCL device deviceX.

Returns

The hwloc OS device object corresponding to the given OpenCL device device.

NULL if none could be found, for instance if required OpenCL attributes are not available.

Generated by Doxygen

202 Topic Documentation

This function currently only works on AMD and NVIDIA OpenCL devices that support relevant OpenCL extensions.
hwloc_opencl_get_device_osdev_by_index() should be preferred whenever possible, i.e. when platform and device
index are known.

Topology topology and device device must match the local machine. |/O devices detection and the Open«
CL component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_opencl_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

23.40.2.3 hwloc_opencl_get_device_osdev_by_index()

hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned platform index,
unsigned device_index) [inline]
Get the hwloc OS device object corresponding to the OpenCL device for the given indexes.

Returns
The hwloc OS device object describing the OpenCL device whose platform index is plat form_index, and
whose device index within this platform if device_index.
NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the OpenCL component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.40.2.4 hwloc_opencl_get_device_pci_busid()

int hwloc_opencl_get_device_pci_busid (

cl_device_id device,

unsigned * domain,

unsigned * bus,

unsigned * dev,

unsigned * func) [inline]
Return the domain, bus and device IDs of the OpenCL device device.
Device device must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.41 Interoperability with the CUDA Driver API

Functions

« int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology, CUdevice cudevice, int xdomain, int xbus, int
xdev)

Generated by Doxygen

23.41 Interoperability with the CUDA Driver API 203

« int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology, CUdevice cudevice, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

23.41.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Driver API.

23.41.2 Function Documentation
23.41.2.1 hwloc_cuda_get_device_cpuset()

int hwloc_cuda_get_device_cpuset (
hwloc_topology_t topology,
CUdevice cudevice,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device cudevice.
Store in set the CPU-set describing the locality of the CUDA device cudevice.
Topology topology and device cudevice must match the local machine. 1/0O devices detection and the CUDA
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_cuda_get_device_osdev() and hwloc_cuda_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.41.2.2 hwloc_cuda_get_device_osdev()

hwloc_obj_t hwloc_cuda_get_device_osdev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc OS device object corresponding to CUDA device cudevice.

Returns
The hwloc OS device object that describes the given CUDA device cudevice.
NULL if none could be found.
Topology topology and device cudevice must match the local machine. 1/O devices detection and the

CUDA component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_cuda_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

Generated by Doxygen

204 Topic Documentation

23.41.2.3 hwloc_cuda_get_device_osdev_by_index()

hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the CUDA device whose index is 1idx.

Returns
The hwloc OS device object describing the CUDA device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the CUDA component must be enabled in the topology.

Note
The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).
This function is identical to hwloc_cudart_get_device_osdev_by_index().

23.41.2.4 hwloc_cuda_get_device_pci_ids()

int hwloc_cuda_get_device_pci_ids (

hwloc_topology_t topology,

CUdevice cudevice,

int * domain,

int x bus,

int *x dev) [inline]
Return the domain, bus and device IDs of the CUDA device cudevice.
Device cudevice must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.41.2.5 hwloc_cuda_get_device_pcidev()

hwloc_obj_t hwloc_cuda_get_device_pcidev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc PCI device object corresponding to the CUDA device cudevice.

Returns

The hwloc PCI device object describing the CUDA device cudevice.
NULL if none could be found.

Topology topology and device cudevice must match the local machine. I/0 devices detection must be enabled in
topology topology. The CUDA component is not needed in the topology.

23.42 Interoperability with the CUDA Runtime API

Functions

« int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology, int idx, int xdomain, int xbus, int xdev)

Generated by Doxygen

23.42 Interoperability with the CUDA Runtime API 205

« int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology, int idx, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int idx)
» hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

23.42.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Runtime API.

23.42.2 Function Documentation
23.42.2.1 hwloc_cudart_get_device_cpuset()

int hwloc_cudart_get_device_cpuset (
hwloc_topology_t topology,
int idx,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device idx.
Store in set the CPU-set describing the locality of the CUDA device whose index is 1 dx.
Topology topology and device idx must match the local machine. 1/0 devices detection and the CUDA component
are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_cudart_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.42.2.2 hwloc_cudart_get_device_osdev_by_index()

hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the CUDA device whose index is i dx.

Returns

The hwloc OS device object describing the CUDA device whose index is 1dx.
NULL if none could be found.
The topology topology does not necessarily have to match the current machine. For instance the topology may be

an XML import of a remote host. 1/0O devices detection and the CUDA component must be enabled in the topology. If
not, the locality of the object may still be found using hwloc_cudart_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

This function is identical to hwloc_cuda_get_device_osdev_by_index().

Generated by Doxygen

206 Topic Documentation

23.42.2.3 hwloc_cudart_get_device_pci_ids()

int hwloc_cudart_get_device_pci_ids (

hwloc_topology_t topology,

int idx,

int % domain,

int % bus,

int *x dev) [inline]
Return the domain, bus and device IDs of the CUDA device whose index is idx.
Device index 1idx must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.42.2.4 hwloc_cudart_get_device_pcidev()

hwloc_obj_t hwloc_cudart_get_device_pcidev (
hwloc_topology_t topology,
int 1idx) [inline]
Get the hwloc PCI device object corresponding to the CUDA device whose index is 1dx.

Returns
The hwloc PCI device object describing the CUDA device whose index is 1 dx.
NULL if none could be found.

Topology t opology and device i dx must match the local machine. 1/0O devices detection must be enabled in topology
topology. The CUDA component is not needed in the topology.

23.43 Interoperability with the NVIDIA Management Library

Functions

« int hwloc_nvml_get_device_cpuset (hwloc_topology_t topology, nvmlIDevice_t device, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)
» hwloc_obj_t hwloc_nvml_get_device_osdev (hwloc_topology_t topology, nvmIDevice_t device)

23.43.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the NVIDIA Management Library
(NVML).

23.43.2 Function Documentation
23.43.2.1 hwloc_nvml_get_device_cpuset()

int hwloc_nvml_get_device_cpuset (
hwloc_topology_t topology,
nvmlDevice_t device,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to NVML device device.
Store in set the CPU-set describing the locality of the NVML device device.
Topology topology and device device must match the local machine. 1/0 devices detection and the NVML compo-
nent are not needed in the topology.

Generated by Doxygen

23.44 Interoperability with the ROCm SMI Management Library 207

The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_nvml_get_device_osdev() and hwloc_nvml_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.43.2.2 hwloc_nvml_get_device_osdev()

hwloc_obj_t hwloc_nvml_get_device_osdev (
hwloc_topology_t topology,
nvmlDevice_t device) [inline]
Get the hwloc OS device object corresponding to NVML device device.

Returns
The hwloc OS device object that describes the given NVML device device.

NULL if none could be found.

Topology topology and device device must match the local machine. 1/O devices detection and the
NVML component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_nvml_get_device_cpuset().

Note

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI devices are
filtered out).

23.43.2.3 hwloc_nvml_get_device_osdev_by_index()

hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the NVML device whose index is 1 dx.

Returns
The hwloc OS device object describing the NVML device whose index is idx.

NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the NVML component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.44 Interoperability with the ROCm SMI Management Library

Functions

« int hwloc_rsmi_get_device_cpuset (hwloc_topology_t topology, uint32_t dv_ind, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (hwloc_topology_t topology, uint32_t dv_ind)
» hwloc_obj_t hwloc_rsmi_get_device_osdev (hwloc_topology_t topology, uint32_t dv_ind)

Generated by Doxygen

208 Topic Documentation

23.44.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the ROCm SMI Management
Library.

23.44.2 Function Documentation
23.44.2.1 hwloc_rsmi_get_device_cpuset()

int hwloc_rsmi_get_device_cpuset (
hwloc_topology_t topology,
uint32_t dv_ind,
hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to AMD GPU device whose index is dv__ind.
Store in set the CPU-set describing the locality of the AMD GPU device whose index is dv_ind.
Topology topology and device dv__ind must match the local machine. 1/O devices detection and the ROCm SMI
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_rsmi_get_device_osdev() and hwloc_rsmi_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.44.2.2 hwloc_rsmi_get_device_osdev()

hwloc_obj_t hwloc_rsmi_get_device_osdev (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to AMD GPU device, whose index is dv_ind.

Returns

The hwloc OS device object that describes the given AMD GPU, whose index is dv__ind.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. 1/O devices detection and the ROCm
SMI component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_rsmi_get_device_cpuset().

Note

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

23.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to the AMD GPU device whose index is dv__ind.

Generated by Doxygen

23.45 Interoperability with the oneAPI Level Zero interface. 209

Returns

The hwloc OS device object describing the AMD GPU device whose index is dv__ind.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the ROCm SMI component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.45 Interoperability with the oneAPI Level Zero interface.

Functions

« int hwloc_levelzero_get_device_cpuset (hwloc_topology_t topology, ze_device_handle_t device, hwloc_cpuset_t
set)

« int hwloc_levelzero_get sysman_device_cpuset (hwloc_topology t topology, zes_device_handle_t device,
hwloc_cpuset_t set)

» hwloc_obj_t hwloc_levelzero_get_device_osdev (hwloc_topology_t topology, ze_device_handle_t device)

» hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (hwloc_topology_t topology, zes_device_handle_t de-
vice)

23.45.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the Level Zero API, both for main
Core devices (ZE API) and the Sysman devices (ZES API).

23.45.2 Function Documentation
23.45.2.1 hwloc_levelzero_get_device_cpuset()

int hwloc_levelzero_get_device_cpuset (
hwloc_topology_t topology,
ze_device_handle_t device,
hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to the Level Zero device device.
Store in set the CPU-set describing the locality of the Level Zero device device.
Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with zelnit(). 1/O devices detection and the Level Zero component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_levelzero_get_device_osdev().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Note

zeDevicePciGetPropertiesExt() must be supported, or the entire machine locality will be returned.

Generated by Doxygen

210 Topic Documentation

23.45.2.2 hwloc_levelzero_get_device_osdev()

hwloc_obj_t hwloc_levelzero_get_device_osdev (
hwloc_topology_t topology,
ze_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero device device.

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.

Topology topology and device dv__ind must match the local machine. The Level Zero library must have been
initialized with zelnit(). 1/0 devices detection and the Level Zero component must be enabled in the topology. If not, the
locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZE device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main hwloc
OS device is returned instead of one of its children.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

zeDevicePciGetPropertiesExt() must be supported.

23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()

int hwloc_levelzero_get_sysman_device_cpuset (

hwloc_topology_t topology,

zes_device_handle_t device,

hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to the Level Zero Sysman device device.
Store in set the CPU-set describing the locality of the Level Zero device device.
Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with Sysman enabled with zeslnit(). /O devices detection and the Level Zero component are not needed in
the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_levelzero_get_device_osdev().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (
hwloc_topology_t topology,
zes_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero Sysman device device.

Generated by Doxygen

23.46 Interoperability with OpenGL displays 211

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. The Level Zero library must have been
initialized with Sysman enabled with zeslInit(). I/O devices detection and the Level Zero component must be enabled in
the topology. If not, the locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZES device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main
hwloc OS device is returned instead of one of its children.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

23.46 Interoperability with OpenGL displays

Functions

» hwloc_obj_t hwloc_gl_get_display_osdev_by port_device (hwloc_topology_t topology, unsigned port, unsigned
device)

* hwloc_obj_t hwloc_gl_get_display_osdev_by_name (hwloc_topology_t topology, const char xname)

« int hwloc_gl_get_display_by osdev (hwloc_topology_t topology, hwloc_obj_t osdev, unsigned xport, unsigned
xdevice)

23.46.1 Detailed Description

This interface offers ways to retrieve topology information about OpenGL displays.
Only the NVIDIA display locality information is currently available, using the NV-CONTROL X11 extension and the NVCtrl
library.

23.46.2 Function Documentation
23.46.2.1 hwloc_gl_get_display_by_osdev()

int hwloc_gl_get_display_by_osdev (
hwloc_topology_t topology,
hwloc_obij_t osdev,
unsigned * port,
unsigned * device) [inline]
Get the OpenGL display port and device corresponding to the given hwloc OS object.
Retrieves the OpenGL display port (server) in port and device (screen) in screen that correspond to the given hwloc
OS device object.

Returns
0 on success.

-1 if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

Generated by Doxygen

212 Topic Documentation

23.46.2.2 hwloc_gl_get_display_osdev_by_ name()

hwloc_obj_t hwloc_gl_get_display_osdev_by_name (
hwloc_topology_t topology,
const char *x name) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by name.
Returns

The hwloc OS device object describing the OpenGL display whose name is name, built as ":port.device" such as
":0.0".
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.46.2.3 hwloc_gl_get_display_osdev_by_port_device()

hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (
hwloc_topology_t topology,
unsigned port,
unsigned device) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by port and device index.
Returns

The hwloc OS device object describing the OpenGL display whose port (server) is port and device (screen) is
device.

NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

23.47 Interoperability with OpenFabrics

Functions

« int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology, struct ibv_device xibdev, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (hwloc_topology_t topology, const char xibname)
» hwloc_obj_t hwloc_ibv_get _device_osdev (hwloc_topology_t topology, struct ibv_device xibdev)

23.47.1 Detailed Description

This interface offers ways to retrieve topology information about OpenFabrics devices (InfiniBand, Omni-Path, usNIC,
etc).

Generated by Doxygen

23.47 Interoperability with OpenFabrics 213

23.47.2 Function Documentation
23.47.2.1 hwloc_ibv_get_device_cpuset()

int hwloc_ibv_get_device_cpuset (
hwloc_topology_t topology,
struct ibv_device x ibdev,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device ibdev.
Store in set the CPU-set describing the locality of the OpenFabrics device ibdev (InfiniBand, etc).
Topology topology and device ibdev must match the local machine. 1/O devices detection is not needed in the

topology.

The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_ibv_get_device_osdev() and hwloc_ibv_get_device_osdev_by_name().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

23.47.2.2 hwloc_ibv_get_device_osdev()

hwloc_obj_t hwloc_ibv_get_device_osdev (
hwloc_topology_t topology,
struct ibv_device *x ibdev) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device ibdewv.

Returns

The hwloc OS device object describing the OpenFabrics device ibdev (InfiniBand, etc).
NULL if none could be found.

Topology topology and device ibdev must match the local machine. 1/0 devices detection must be enabled in the
topology. If not, the locality of the object may still be found using hwloc_ibv_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

23.47.2.3 hwloc_ibv_get_device_osdev_by_name()

hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (
hwloc_topology_t topology,
const char *x ibname) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device named ibname.

Returns

The hwloc OS device object describing the OpenFabrics device (InfiniBand, Omni-Path, usNIC, etc) whose name
is ibname (mIx5_0, hfi1_0, usnic_0, qib0, etc).
NULL if none could be found.

The name ibname is usually obtained from ibv_get_device_name().

The topology t opology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

Generated by Doxygen

214 Topic Documentation

23.48 Topology differences

Data Structures

« union hwloc_topology_diff_obj_attr _u
 union hwloc_topology_diff_u

Typedefs

+ typedef enum hwloc_topology_diff obj_attr_type_e hwloc_topology_diff_obj_attr_type_t
« typedef enum hwloc_topology_diff_type_e hwloc_topology_diff_type_t
+ typedef union hwloc_topology_diff_u * hwloc_topology_diff_t

Enumerations

« enum hwloc_topology_diff_obj_attr_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE , HWLOC_TOPOLOGY_DIFF_OBJ_A
, HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO }
+ enum hwloc_topology_diff_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX

1
- enum hwloc_topology_diff_apply_flags_e { HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE }

Functions

+ int hwloc_topology_diff_build (hwloc_topology_t topology, hwloc_topology_t newtopology, unsigned long flags,
hwloc_topology_diff_t xdiff)

« int hwloc_topology_diff_apply (hwloc_topology_t topology, hwloc_topology_diff_t diff, unsigned long flags)

+ int hwloc_topology_diff_destroy (hwloc_topology_diff_t diff)

« int hwloc_topology_diff load_xml (const char xxmlpath, hwloc_topology_diff t *diff, char xxrefname)

« int hwloc_topology_diff_export_xml (hwloc_topology_diff_t diff, const char *refname, const char *xmlpath)

« int hwloc_topology_diff_load xmlbuffer (const char xxmlbuffer, int buflen, hwloc_topology diff t xdiff, char
xxrefname)

+ int hwloc_topology_diff_export_xmlbuffer (hwloc_topology_diff_t diff, const char xrefname, char xxxmlbuffer, int
xbuflen)

23.48.1 Detailed Description

Applications that manipulate many similar topologies, for instance one for each node of a homogeneous cluster, may
want to compress topologies to reduce the memory footprint.

This file offers a way to manipulate the difference between topologies and export/import it to/from XML. Compression
may therefore be achieved by storing one topology entirely while the others are only described by their differences with
the former. The actual topology can be reconstructed when actually needed by applying the precomputed difference to
the reference topology.

This interface targets very similar nodes. Only very simple differences between topologies are actually supported, for
instance a change in the memory size, the name of the object, or some info attribute. More complex differences such as
adding or removing objects cannot be represented in the difference structures and therefore return errors. Differences
between object sets or topology-wide allowed sets, cannot be represented either.

It means that there is no need to apply the difference when looking at the tree organization (how many levels, how many
objects per level, what kind of objects, CPU and node sets, etc) and when binding to objects. However the difference
must be applied when looking at object attributes such as the name, the memory size or info attributes.

23.48.2 Typedef Documentation
23.48.2.1 hwloc_topology_diff _obj_attr_type_t

typedef enum hwloc_topology_diff_obj_attr_type_e hwloc_topology_diff_obj_attr_type_t
Type of one object attribute difference.

Generated by Doxygen

23.48 Topology differences

215

23.48.2.2 hwloc_topology_diff_t

typedef union hwloc_topology_diff_u * hwloc_topology_diff_t
One element of a difference list between two topologies.

23.48.2.3 hwloc_topology_diff_type_t

typedef enum hwloc_topology_diff_ type_e hwloc_topology_diff_ type_t

Type of one element of a difference list.

23.48.3 Enumeration Type Documentation

23.48.3.1 hwloc_topology_diff_apply_flags_e

enum hwloc_topology_diff_ apply_flags_e
Flags to be given to hwloc_topology_diff_apply().

Enumerator

HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE

‘ Apply topology diff in reverse direction.

23.48.3.2 hwloc_topology_diff obj_attr_type_e

enum hwloc_topology_diff obj_attr_type_e
Type of one object attribute difference.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

The object local memory is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_ui
(and the index field is ignored).

ni64 s

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME

The object name is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_st
(and the name field is ignored).

ring_s

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO

the value of an info attribute is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_st

ring_s.

23.48.3.3 hwloc_topology_diff type_e

enum hwloc_topology_diff_type_e
Type of one element of a difference list.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR

An object attribute was changed. The union is a
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s.

HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX

The difference is too complex, it cannot be represented. The
difference below this object has not been checked.
hwloc_topology_diff_build() will return 1. The union is a
hwloc_topology_diff_u::hwloc_topology_diff too_complex_s.

Generated by Doxygen

216 Topic Documentation

23.48.4 Function Documentation
23.48.4.1 hwloc_topology_diff_apply()

int hwloc_topology_diff_ apply (
hwloc_topology_t topology,
hwloc_topology_diff_t diff,
unsigned long flags)
Apply a topology diff to an existing topology.
flags is an OR'ed set of hwloc_topology_diff apply_flags_e.
The new topology is modified in place. hwloc_topology_dup() may be used to duplicate it before patching.
If the difference cannot be applied entirely, all previous applied elements are unapplied before returning.

Returns

0 on success.

-N if applying the difference failed while trying to apply the N-th part of the difference. For instance -1 is returned
if the very first difference element could not be applied.

23.48.4.2 hwloc_topology_diff build()

int hwloc_topology_diff build (

hwloc_topology_t topology,

hwloc_topology_t newtopology,

unsigned long flags,

hwloc_topology_diff_t *x diff)
Compute the difference between 2 topologies.
The difference is stored as a list of hwloc_topology_diff_t entries starting at diff. It is computed by doing a depth-first
traversal of both topology trees simultaneously.
If the difference between 2 objects is too complex to be represented (for instance if some objects have different types,
or different numbers of children), a special diff entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is queued.
The computation of the diff does not continue below these objects. So each such diff entry means that the difference
between two subtrees could not be computed.

Returns

0 if the difference can be represented properly.
0 with di f £ pointing to NULL if there is no difference between the topologies.
1 if the difference is too complex (see above). Some entries in the list will be of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX.

-1 on any other error.

Note

flags is currently not used. It should be 0.
The output diff has to be freed with hwloc_topology_diff_destroy().

The output diff can only be exported to XML or passed to hwloc_topology_diff_apply() if 0 was returned, i.e. if no
entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is listed.

The output diff may be modified by removing some entries from the list. The removed entries should be freed by
passing them to to hwloc_topology_diff_destroy() (possible as another list).

Generated by Doxygen

23.48 Topology differences

217

23.48.4.3 hwloc_topology_diff _destroy()

int hwloc_topology_diff_destroy (
hwloc_topology_diff_t diff)
Destroy a list of topology differences.

Returns

0.

23.48.4.4 hwloc_topology_diff_export_xml()

int hwloc_topology_diff_ export_xml (
hwloc_topology_diff_t diff,
const char x refname,
const char * xmlpath)

Export a list of topology differences to a XML file.

If not NULL, re fname defines an identifier string for the reference topology which was used as a base when computing
this difference. This identifier is usually the name of the other XML file that contains the reference topology. This attribute

is given back when reading the diff from XML.
Returns

0 on success, -1 on error.

23.48.4.5 hwloc_topology_diff export_xmlbuffer()

int hwloc_topology_diff_ export_xmlbuffer (
hwloc_topology_diff_t diff,
const char * refname,
char *x xmlbuffer,
int *x buflen)

Export a list of topology differences to a XML buffer.

If not NULL, re fname defines an identifier string for the reference topology which was used as a base when computing
this difference. This identifier is usually the name of the other XML file that contains the reference topology. This attribute

is given back when reading the diff from XML.

The returned buffer ends with a \ 0 that is included in the returned length.

Returns

0 on success, -1 on error.

Note

The XML buffer should later be freed with hwloc_free_xmlbuffer().

23.48.4.6 hwloc_topology_diff _load_xml()

int hwloc_topology_diff_load_xml (
const char * xmlpath,
hwloc_topology_diff_t x diff,
char %% refname)

Load a list of topology differences from a XML file.

If not NULL, refname will be filled with the identifier string of the reference topology for the difference file, if any was
specified in the XML file. This identifier is usually the name of the other XML file that contains the reference topology.

Generated by Doxygen

218 Topic Documentation

Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

23.48.4.7 hwloc_topology_diff_load_xmibuffer()

int hwloc_topology_diff load_xmlbuffer (

const char x xmlbuffer,

int buflen,

hwloc_topology_ diff t *x diff,

char %% refname)
Load a list of topology differences from a XML buffer.
Build a list of differences from the XML memory buffer given at xm1buf fer and of length buf 1en (including an ending
\ 0). This buffer may have been filled earlier with hwloc_topology_diff_export_xmlbuffer().
If not NULL, refname will be filled with the identifier string of the reference topology for the difference file, if any was
specified in the XML file. This identifier is usually the name of the other XML file that contains the reference topology.

Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

23.49 Sharing topologies between processes

Functions

« int hwloc_shmem_topology_get_length (hwloc_topology_t topology, size_t xlengthp, unsigned long flags)

« int hwloc_shmem_topology_write (hwloc_topology_t topology, int fd, hwloc_uint64_t fileoffset, void xmmap_+«
address, size_t length, unsigned long flags)

« int hwloc_shmem_topology adopt (hwloc_topology_t xtopologyp, int fd, hwloc_uint64_t fileoffset, void xmmap+«
_address, size_t length, unsigned long flags)

23.49.1 Detailed Description

These functions are used to share a topology between processes by duplicating it into a file-backed shared-memory

buffer.

The master process must first get the required shared-memory size for storing this topology with hwloc_shmem_topology_get_length().
Then it must find a virtual memory area of that size that is available in all processes (identical virtual addresses in all

processes). On Linux, this can be done by comparing holes found in /proc/<pid>/maps for each process.

Once found, it must open a destination file for storing the buffer, and pass it to hwloc_shmem_topology_write() together

with virtual memory address and length obtained above.

Other processes may then adopt this shared topology by opening the same file and passing it to hwloc_shmem_topology adopt()

with the exact same virtual memory address and length.

23.49.2 Function Documentation

23.49.2.1 hwloc_shmem_topology_adopt()

int hwloc_shmem_topology_adopt (
hwloc_topology_t * topologyp,

Generated by Doxygen

23.49 Sharing topologies between processes 219

int fd,

hwloc_uintod4_t fileoffset,

void * mmap_address,

size_t length,

unsigned long flags)
Adopt a shared memory topology stored in a file.
Map a file in virtual memory and adopt the topology that was previously stored there with hwloc_shmem_topology_write().
The returned adopted topology in topologyp can be used just like any topology. And it must be destroyed with
hwloc_topology_destroy() as usual.
However the topology is read-only. For instance, it cannot be modified with hwloc_topology_restrict() and object userdata
pointers cannot be changed.
The segment of the file pointed by descriptor £d, starting at offset fileoffset, and of length length (in bytes), will
be mapped at virtual address mmap_address.
The file pointed by descriptor £d, the offset fileoffset, the requested mapping virtual address mmap_address
and the length 1ength must be identical to what was given to hwloc_shmem_topology_write() earlier.

Note

Flags £1ags are currently unused, must be 0.

The object userdata pointer should not be used unless the process that created the shared topology also placed
userdata-pointed buffers in shared memory.

This function takes care of calling hwloc_topology_abi_check().

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and 1ength isn't available
in the process.

-1 witherrnosetto EINVALif fileoffset,mmap_address or length aren't page-aligned, or do not match
what was given to hwloc_shmem_topology_write() earlier.

-1 with errno set to EINVAL if the layout of the topology structure is different between the writer process and the
adopter process.

23.49.2.2 hwloc_shmem_topology_get_length()

int hwloc_shmem_topology_get_length (
hwloc_topology_t topology,
size_t * lengthp,
unsigned long flags)
Get the required shared memory length for storing a topology.
This length (in bytes) must be used in hwloc_shmem_topology_write() and hwloc_shmem_topology_adopt() later.

Returns

the length, or -1 on error, for instance if flags are invalid.

Note

Flags f1ags are currently unused, must be 0.

Generated by Doxygen

220 Topic Documentation

23.49.2.3 hwloc_shmem_topology_write()

int hwloc_shmem_topology_write (
hwloc_topology_t topology,
int fd,
hwloc_uint64_t fileoffset,
void * mmap_address,
size_t length,
unsigned long flags)
Duplicate a topology to a shared memory file.
Temporarily map a file in virtual memory and duplicate the topology t opology by allocating duplicates in there.
The segment of the file pointed by descriptor £d, starting at offset fileoffset, and of length Length (in bytes), will
be temporarily mapped at virtual address mmap_address during the duplication.
The mapping length 1ength must have been previously obtained with hwloc_shmem_topology_get_length() and the
topology must not have been modified in the meantime.

Note

Flags f1ags are currently unused, must be 0.

The object userdata pointer is duplicated but the pointed buffer is not. However the caller may also allocate it
manually in shared memory to share it as well.

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and 1ength isn't available
in the process.

-1 with errno setto EINVAL if fileoffset, mmap_address or length aren't page-aligned.

23.50 Components and Plugins: Discovery components and backends

Data Structures

« struct hwloc_disc_component
 struct hwloc_disc_status
« struct hwloc_backend

Typedefs

* typedef enum hwloc_disc_phase_e hwloc_disc_phase_t

Enumerations

» enum hwloc_disc_phase_e {
HWLOC_DISC_PHASE_GLOBAL , HWLOC _DISC PHASE _CPU , HWLOC_DISC_PHASE_MEMORY ,
HWLOC_DISC_PHASE_PCI,
HWLOC_DISC_PHASE_IO, HWLOC_DISC_PHASE_MISC , HWLOC DISC PHASE_ANNOTATE , HWLOC DISC_PHASE TWE
1

» enum hwloc_disc_status_flag_e { HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCES }

Functions

« struct hwloc_backend *x hwloc_backend_alloc (struct hwloc_topology xtopology, struct hwloc_disc_component
xcomponent)
« int hwloc_backend_enable (struct hwloc_backend xbackend)

Generated by Doxygen

23.50 Components and Plugins: Discovery components and backends 221

23.50.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.50.2 Typedef Documentation
23.50.2.1 hwloc_disc_phase_t

typedef enum hwloc_disc_phase_e hwloc_disc_phase_t
Discovery phase.

23.50.3 Enumeration Type Documentation
23.50.3.1 hwloc_disc_phase_e

enum hwloc_disc_phase_e
Discovery phase.

Enumerator

HWLOC_DISC_PHASE_GLOBAL | xml or synthetic, platform-specific components such as bgqg. Discovers
everything including CPU, memory, I/O and everything else. A component
with a Global phase usually excludes all other phases.

HWLOC_DISC_PHASE_CPU | CPU discovery.

HWLOC_DISC_PHASE_MEMORY | Attach memory to existing CPU objects.

HWLOC_DISC_PHASE_PCI | Attach PCI devices and bridges to existing CPU objects.

HWLOC_DISC_PHASE_IO | I/O discovery that requires PCl devices (OS devices such as OpenCL,
CUDA, etc.).

HWLOC_DISC_PHASE_MISC | Misc objects that gets added below anything else.

HWLOC_DISC_PHASE_ANNOTATE | Annotating existing objects, adding distances, etc.

HWLOC_DISC_PHASE_TWEAK | Final tweaks to a ready-to-use topology. This phase runs once the
topology is loaded, before it is returned to the topology. Hence it may only
use the main hwloc API for modifying the topology, for instance by
restricting it, adding info attributes, etc.

23.50.3.2 hwloc_disc_status_flag_e

enum hwloc_disc_status_flag_e

Discovery status flags.

Enumerator

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_+« | The sets of allowed resources were already retrieved.
RESOURCES

23.50.4 Function Documentation
23.50.4.1 hwloc_backend_alloc()

struct hwloc_backend * hwloc_backend_alloc (

struct hwloc_topology * topology,

Generated by Doxygen

222 Topic Documentation

struct hwloc_disc_component * component)
Allocate a backend structure, set good default values, initialize backend->component and topology, etc. The caller will
then modify whatever needed, and call hwloc_backend_enable().

23.50.4.2 hwloc_backend_enable()

int hwloc_backend_enable (
struct hwloc_backend * backend)
Enable a previously allocated and setup backend.

23.51 Components and Plugins: Generic components

Data Structures

« struct hwloc_component

Typedefs

« typedef enum hwloc_component_type_e hwloc_component_type_t

Enumerations
» enum hwloc_component_type_e { HWLOC_COMPONENT_TYPE_DISC , HWLOC_COMPONENT_TYPE_XML
1
Functions

« int hwloc_plugin_check_namespace (const char *xpluginname, const char xsymbol)

23.51.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.51.2 Typedef Documentation

23.51.2.1 hwloc_component_type_t

typedef enum hwloc_component_type_e hwloc_component_type_t
Generic component type.

23.51.3 Enumeration Type Documentation

23.51.3.1 hwloc_component_type_e

enum hwloc_component_type_e
Generic component type.

Enumerator

HWLOC_COMPONENT_TYPE_DISC | The data field must point to a struct hwloc_disc_component.
HWLOC_COMPONENT_TYPE_XML | The data field must point to a struct hwloc_xml_component.

Generated by Doxygen

23.52 Components and Plugins: Core functions to be used by components 223

23.51.4 Function Documentation
23.51.4.1 hwloc_plugin_check_namespace()

int hwloc_plugin_check_namespace (
const char * pluginname,
const char * symbol) [inline]
Make sure that plugins can lookup core symbols.
This is a sanity check to avoid lazy-lookup failures when libhwloc is loaded within a plugin, and later tries to load its own
plugins. This may fail (and abort the program) if libhwloc symbols are in a private namespace.

Returns

0 on success.

-1 if the plugin cannot be successfully loaded. The caller plugin init() callback should return a negative error code
as well.

Plugins should call this function in their init() callback to avoid later crashes if lazy symbol resolution is used by the upper
layer that loaded hwloc (e.g. OpenCL implementations using dlopen with RTLD_LAZY).

Note

The build system must define HWLOC_INSIDE_PLUGIN if and only if building the caller as a plugin.

This function should remain inline so plugins can call it even when they cannot find libhwloc symbols.

23.52 Components and Plugins: Core functions to be used by components

Macros

+ #define HWLOC_SHOW_CRITICAL_ERRORS() (hwloc_hide_errors() < 2)
+ #define HWLOC_SHOW_ALL_ERRORS() (hwloc_hide_errors() == 0)

Functions

* int hwloc_hide_errors (void)

» hwloc_obj_t hwloc__insert_object_by_ cpuset (struct hwloc_topology xtopology, hwloc_obj_t root, hwloc_obj_t
obj, const char xreason)

« void hwloc_insert_object_by_parent (struct hwloc_topology *topology, hwloc_obj_t parent, hwloc_obj_t obj)

» hwloc_obj_t hwloc_alloc_setup_object (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned os_index)

« int hwloc_obj_add_children_sets (hwloc_obj_t obj)

« int hwloc_topology_reconnect (hwloc_topology_t topology, unsigned long flags)

23.52.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.52.2 Macro Definition Documentation
23.52.2.1 HWLOC_SHOW_ALL_ERRORS

#define HWLOC_SHOW_ALL_ERRORS () (hwloc_hide_errors() == 0)

23.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

#define HWLOC_SHOW_CRITICAL_ERRORS() (hwloc_hide_errors() < 2)

Generated by Doxygen

224 Topic Documentation

23.52.3 Function Documentation
23.52.3.1 hwloc__insert_object_by_cpuset()

hwloc_obj_t hwloc__insert_object_by_cpuset (
struct hwloc_topology * topology,
hwloc_obj_t root,
hwloc_obj_t obj,
const char *x reason)
Add an object to the topology.
Insert new object ob j in the topology starting under existing object root (if NULL, the topology root object is used).
It is sorted along the tree of other objects according to the inclusion of cpusets, to eventually be added as a child of the
smallest object including this object.
If the cpuset is empty, the type of the object (and maybe some attributes) must be enough to find where to insert the
object. This is especially true for NUMA nodes with memory and no CPUs.
The given object should not have children.
This shall only be called before levels are built.
The caller should check whether the object type is filtered-out before calling this function.
The topology cpuset/nodesets will be enlarged to include the object sets.
reason is a unigue string identifying where and why this insertion call was performed (it will be displayed in case of
internal insertion error).
Returns the object on success. Returns NULL and frees obj on error. Returns another object and frees obj if it was
merged with an identical pre-existing object.

23.52.3.2 hwloc_alloc_setup_object()

hwloc_obj_t hwloc_alloc_setup_object (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned os_index)
Allocate and initialize an object of the given type and physical index.
If os_index is unknown or irrelevant, use HWLOC_UNKNOWN_INDEX.

23.52.3.3 hwloc_hide_errors()

int hwloc_hide_errors (
void)
Check whether error messages are hidden.
Callers should print critical error messages (e.g. invalid hw topo info, invalid config) only if this function returns strictly
less than 2.
Callers should print non-critical error messages (e.g. failure to initialize CUDA) if this function returns 0.
This function return 1 by default (show critical only), 0 in Istopo (show all), or anything set in HWLOC_HIDE_ERRORS
in the environment.
Use macros HWLOC_SHOW_CRITICAL_ERRORS() and HWLOC_SHOW_ALL_ERRORS() for clarity.

23.52.3.4 hwloc_insert_object_by_parent()

void hwloc_insert_object_by_parent (

struct hwloc_topology * topology,

hwloc_obj_t parent,

hwloc_obj_t obj)
Insert an object somewhere in the topology.
It is added as the last child of the given parent. The cpuset is completely ignored, so strange objects such as I/O devices
should preferably be inserted with this.
When used for "normal” children with cpusets (when importing from XML when duplicating a topology), the caller should
make sure that:

Generated by Doxygen

23.53 Components and Plugins: Filtering objects 225

« children are inserted in order,
« children cpusets do not intersect.

The given object may have normal, /O or Misc children, as long as they are in order as well. These children must have
valid parent and next_sibling pointers.
The caller should check whether the object type is filtered-out before calling this function.

23.52.3.5 hwloc_obj_add_children_sets()

int hwloc_obj_add_children_sets (
hwloc_obj_t obj)
Setup object cpusets/nodesets by OR'ing its children.
Used when adding an object late in the topology. Will update the new object by OR'ing all its new children sets.
Used when PCI backend adds a hostbridge parent, when distances add a new Group, etc.

23.52.3.6 hwloc_topology_reconnect()

int hwloc_topology_reconnect (
hwloc_topology_t topology,
unsigned long flags)
Request a reconnection of children and levels in the topology.
May be used by backends during discovery if they need arrays or lists of object within levels or children to be fully
connected.
flags is currently unused, must 0.

23.53 Components and Plugins: Filtering objects

Functions

« int hwloc_filter_check_pcidev_subtype_important (unsigned classid)

« int hwloc_filter_check_osdev_subtype_important (hwloc_obj_osdev_type_t subtype)

+ int hwloc_filter_check_keep_object_type (hwloc_topology_t topology, hwloc_obj_type_t type)
« int hwloc_filter_check_keep_object (hwloc_topology_t topology, hwloc_obj_t obj)

23.53.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.53.2 Function Documentation
23.53.2.1 hwiloc_filter_check_keep_object()

int hwloc_filter_check_keep_object (
hwloc_topology_t topology,
hwloc_obj_t obj) [inline]

Check whether the given object should be filtered-out.

Returns

1 if the object type should be kept, 0 otherwise.

Generated by Doxygen

226

Topic Documentation

23.53.2.2 hwloc_filter_check_keep_object_type()

int hwloc_filter_check_keep_object_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Check whether a non-I/O object type should be filtered-out.
Cannot be used for I/O objects.

Returns

1 if the object type should be kept, 0 otherwise.

23.53.2.3 hwloc_filter_check_osdev_subtype_important()

int hwloc_filter_check_osdev_subtype_important (
hwloc_obj_osdev_type_t subtype) [inline]
Check whether the given OS device subtype is important.

Returns

1 if important, 0 otherwise.

23.53.2.4 hwiloc_filter_check_pcidev_subtype_important()

int hwloc_filter_check_pcidev_subtype_important (
unsigned classid) [inline]
Check whether the given PCI device classid is important.

Returns

1 if important, 0 otherwise.

23.54 Components and Plugins: helpers for PCI discovery

Functions

 unsigned hwloc_pcidisc_find_cap (const unsigned char xconfig, unsigned cap)

« int hwloc_pcidisc_find_linkspeed (const unsigned char xconfig, unsigned offset, float xlinkspeed)
* hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (unsigned device_class, const unsigned char xconfig)
« int hwloc_pcidisc_find_bridge_buses (unsigned domain, unsigned bus, unsigned dev, unsigned func, unsigned

xsecondary_busp, unsigned xsubordinate_busp, const unsigned char xconfig)

+ void hwloc_pcidisc_tree_insert_by_busid (struct hwloc_obj xxtreep, struct hwloc_obj xobj)

+ int hwloc_pcidisc_tree_attach (struct hwloc_topology xtopology, struct hwloc_obj xtree)

23.54.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.54.2 Function Documentation
23.54.2.1 hwloc_pcidisc_check_bridge_type()

hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (
unsigned device_class,

const unsigned char * config)

Return the hwloc object type (PCI device or Bridge) for the given class and configuration space.
This function requires 16 bytes of common configuration header at the beginning of config.

Generated by Doxygen

23.55 Components and Plugins: finding PCI objects during other discoveries 227

23.54.2.2 hwloc_pcidisc_find_bridge_buses()

int hwloc_pcidisc_find_bridge_buses (

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func,

unsigned * secondary_busp,

unsigned * subordinate_busp,

const unsigned char * config
Fills the attributes of the given PCI bridge using the given PCI config space.
This function requires 32 bytes of common configuration header at the beginning of config.
Returns -1 and destroys /p obj if bridge fields are invalid.

23.54.2.3 hwloc_pcidisc_find_cap()

unsigned hwloc_pcidisc_find_cap (
const unsigned char * config,
unsigned cap)
Return the offset of the given capability in the PCI config space buffer.
This function requires a 256-bytes config space. Unknown/unavailable bytes should be set to 0xff.

23.54.2.4 hwloc_pcidisc_find_linkspeed()

int hwloc_pcidisc_find_linkspeed (
const unsigned char * config,
unsigned offset,
float * linkspeed)
Fill linkspeed by reading the PCI config space where PCI_CAP_ID_EXP is at position offset.
Needs 20 bytes of EXP capability block starting at offset in the config space for registers up to link status.

23.54.2.5 hwloc_pcidisc_tree_attach()

int hwloc_pcidisc_tree_attach (
struct hwloc_topology * topology,
struct hwloc_obj * tree)
Add some hostbridges on top of the given tree of PCI objects and attach them to the topology.
Other backends may lookup PCI objects or localities (for instance to attach OS devices) by using hwloc_pcidisc_find«
_by_busid() or hwloc_pcidisc_find_busid_parent().

23.54.2.6 hwloc_pcidisc_tree_insert_by_ busid()

void hwloc_pcidisc_tree_insert_by_busid (

struct hwloc_obj *x treep,

struct hwloc_obj * obj)
Insert a PCI object in the given PCI tree by looking at PCI bus IDs.
If t reep points to NULL, the new object is inserted there.

23.55 Components and Plugins: finding PCI objects during other
discoveries
Functions

« struct hwloc_obj * hwloc_pci_find_parent_by busid (struct hwloc_topology xtopology, unsigned domain, un-
signed bus, unsigned dev, unsigned func)

Generated by Doxygen

228 Topic Documentation

« struct hwloc_obj * hwloc_pci_find_by_busid (struct hwloc_topology *xtopology, unsigned domain, unsigned bus,
unsigned dev, unsigned func)

23.55.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.55.2 Function Documentation
23.55.2.1 hwloc_pci_find_by_busid()

struct hwloc_obj * hwloc_pci_find_by_busid (
struct hwloc_topology * topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func)
Find the PCI device or bridge matching a PCl bus ID exactly.
This is useful for adding specific information about some objects based on their PCI id. When it comes to attaching
objects based on PCl locality, hwloc_pci_find_parent_by busid() should be preferred.

23.55.2.2 hwloc_pci_find_parent_by busid()

struct hwloc_obj * hwloc_pci_find parent_by_busid (

struct hwloc_topology * topology,

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func)
Find the object or a parent of a PCI bus ID.
When attaching a new object (typically an OS device) whose locality is specified by PCI bus ID, this function returns the
PCI object to use as a parent for attaching.
If the exact PCI device with this bus ID exists, it is returned. Otherwise (for instance if it was filtered out), the function
returns another object with similar locality (for instance a parent bridge, or the local CPU Package).

23.56 Components and Plugins: distances

Typedefs

« typedef void * hwloc_backend_distances_add_handle_t

Functions

» hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (hwloc_topology_t topology,
const char xname, unsigned long kind, unsigned long flags)

« int hwloc_backend_distances_add_values (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned nbobjs, hwloc_obj_t *xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« int hwloc_backend_distances_add_commit (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned long flags)

23.56.1 Detailed Description

Generated by Doxygen

23.56 Components and Plugins: distances 229

Note
These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

23.56.2 Typedef Documentation
23.56.2.1 hwloc_backend_distances_add_handle_t

typedef voidx hwloc_backend_distances_add_handle_t
Handle to a new distances structure during its addition to the topology.

23.56.3 Function Documentation
23.56.3.1 hwloc_backend_distances_add_commit()

int hwloc_backend_distances_add_commit (
hwloc_topology_t topology,
hwloc_backend_distances_add_handle_t handle,
unsigned long flags)
Commit a new distances structure.
This is similar to hwloc_distances_add_commit() but this variant is designed for backend inserting distances during
topology discovery.

23.56.3.2 hwloc_backend_distances_add_create()

hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (
hwloc_topology_t topology,
const char * name,
unsigned long kind,
unsigned long flags)
Create a new empty distances structure.
This is identical to hwloc_distances_add_create() but this variant is designed for backend inserting distances during
topology discovery.

23.56.3.3 hwloc_backend_distances_add_values()

int hwloc_backend_distances_add_values (

hwloc_topology_t topology,

hwloc_backend_distances_add_handle_t handle,

unsigned nbobjs,

hwloc_obij_t * objs,

hwloc_uinté64_t x values,

unsigned long flags)
Specify the objects and values in a new empty distances structure.
This is similar to hwloc_distances_add_values() but this variant is designed for backend inserting distances during
topology discovery.
The only semantical difference is that ob js and values are not duplicated, but directly attached to the topology. On
success, these arrays are given to the core and should not ever be freed by the caller anymore.

Generated by Doxygen

230 Topic Documentation

Generated by Doxygen

Chapter 24

Data Structure Documentation

24.1 hwloc_backend Struct Reference

#include <plugins.h>

Data Fields

* unsigned phases

* unsigned long flags

* intis_thissystem

* void x private_data

« void(x disable)(struct hwloc_backend xbackend)

* int(x discover)(struct hwloc_backend xbackend, struct hwloc_disc_status xstatus)

* int(x get_pci_busid_cpuset)(struct hwloc_backend xbackend, struct hwloc_pcidev_attr_s xbusid, hwloc_bitmap_t
cpuset)

24.1.1 Detailed Description

Discovery backend structure.

A backend is the instantiation of a discovery component. When a component gets enabled for a topology, its instantiate()
callback creates a backend.

hwloc_backend_alloc() initializes all fields to default values that the component may change (except "component” and
"next") before enabling the backend with hwloc_backend_enable().

Most backends assume that the topology is_thissystem flag is set because they talk to the underlying operating system.
However they may still be used in topologies without the is_thissystem flag for debugging reasons. In practice, they are
usually auto-disabled in such cases (excluded by xml or synthetic backends, or by environment variables when changing
the Linux fsroot or the x86 cpuid path).

24.1.2 Field Documentation

24.1.2.1 disable

void (x hwloc_backend::disable) (struct hwloc_backend xbackend)
Callback for freeing the private_data. May be NULL.

24.1.2.2 discover

int (* hwloc_backend::discover) (struct hwloc_backend xbackend, struct hwloc_disc_status sxstatus)
Main discovery callback. returns -1 on error, either because it couldn't add its objects ot the existing topology, or because
of an actual discovery/gathering failure. May be NULL.

Generated by Doxygen

232 Data Structure Documentation

24.1.2.3 flags

unsigned long hwloc_backend::flags
Backend flags, currently always 0.

24.1.2.4 get_pci_busid_cpuset

int (*x hwloc_backend: :get_pci_busid_cpuset) (struct hwloc_backend xbackend, struct hwloc_pcidev_<+
attr_s #xbusid, hwloc_bitmap_t cpuset)

Callback to retrieve the locality of a PCI object. Called by the PCI core when attaching PCI hierarchy to CPU objects.
May be NULL.

24.1.2.5 is_thissystem

int hwloc_backend::is_thissystem

Backend-specific 'is_thissystem' property. Set to 0 if the backend disables the thissystem flag for this topology (e.g.
loading from xml or synthetic string, or using a different fsroot on Linux, or a x86 CPUID dump). Set to -1 if the backend
doesn't care (default).

24.1.2.6 phases

unsigned hwloc_backend: :phases
Discovery phases performed by this component, possibly without some of them if excluded by other components. OR'ed
set of hwloc_disc_phase_t.

24.1.2.7 private_data

void* hwloc_backend::private_data
Backend private data, or NULL if none.
The documentation for this struct was generated from the following file:

* plugins.h

24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* union {
struct hwloc_pcidev_attr_s pci
} upstream

» hwloc_obj_bridge_type_t upstream_type
* union {
struct {
unsigned short domain
unsigned char secondary_bus
unsigned char subordinate_bus

} pei
} downstream

» hwloc_obj_bridge_type_t downstream_type
 unsigned depth

Generated by Doxygen

24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 233

24.2.1 Detailed Description
Bridge specific Object Attributes.

24.2.2 Field Documentation
24221 depth

unsigned hwloc_obj_attr_u::hwloc_bridge_attr_s::depth

24.2.2.2 domain

unsigned short hwloc_obj_attr_u::hwloc_bridge_attr_s::domain
Domain number the downstream PCI buses. Only 16bits PCl domains are supported by default.

24.2.2.3 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream

24.2.2.4 downstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream_type
Downstream Bridge type.

24.2.2.,5 pci [1/2]

struct hwloc_pcidev_attr_s hwloc_obj_attr_u::hwloc_bridge_attr_s::pci
PCI attribute of the upstream part as a PCI device.

24.2.2.6 [struct] [2/2]

struct { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::pci

24.2.2.7 secondary_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::secondary_bus

First PCI bus number below the bridge.

24.2.2.8 subordinate_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus

Highest PCI bus number below the bridge.

24.2.2.9 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream

24.2.2.10 upstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream_type
Upstream Bridge type.
The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

234

Data Structure Documentation

24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* hwloc_uint64_t size

* unsigned depth

* unsigned linesize

* int associativity

» hwloc_obj_cache_type_t type

24.3.1 Detailed Description

Cache-specific Object Attributes.

24.3.2 Field Documentation
24.3.2.1 associativity

int hwloc_obj_attr_u::hwloc_cache_attr_s::associativity
Ways of associativity, -1 if fully associative, 0 if unknown.

24.3.2.2 depth

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::depth

Depth of cache (e.g., L1, L2, ...etc.)

24.3.2.3 linesize

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::linesize
Cache-line size in bytes. 0 if unknown.

24.3.24 size

hwloc_uinté64_t hwloc_obj_attr_u::hwloc_cache_attr_s::size

Size of cache in bytes.

24.3.2.5 type

hwloc_obj_cache_type_t hwloc_obj_attr_u::hwloc_cache_attr_s::type

Cache type.

The documentation for this struct was generated from the following file:

* hwloc.h

24.4 hwloc_cl_device_pci_bus_info_khr Struct Reference

#include <opencl.h>

Data Fields

* cl_uint pci_domain
* cl_uint pci_bus

* cl_uint pci_device
* cl_uint pci_function

Generated by Doxygen

24.5 hwloc_cl_device_topology_amd Union Reference 235

24.4.1 Field Documentation
24.41.1 pci_bus

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_bus

24.4.1.2 pci_device

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_device

24.4.1.3 pci_domain

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_domain

24.41.4 pci_function

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_function
The documentation for this struct was generated from the following file:

» opencl.h

24.5 hwloc_cl_device_topology_amd Union Reference

#include <opencl.h>

Data Fields

* struct {
cl_uint type
cl_uint data [5]
} raw

* struct {
cl_uint type
cl_char unused [17]
cl_char bus
cl_char device
cl_char function

} pcie

24.5.1 Field Documentation
24.51.1 bus

cl_char hwloc_cl_device_topology_amd: :bus

24.5.1.2 data

cl_uint hwloc_cl_device_topology_amd::datal[5]

24.5.1.3 device

cl_char hwloc_cl_device_topology_amd: :device

Generated by Doxygen

236 Data Structure Documentation

24.5.1.4 function

cl_char hwloc_cl_device_topology_amd: :function

24.5.1.5 [struct]

struct { ... } hwloc_cl_device_topology_amd: :pcie

24.5.1.6 [struct]

struct { ... } hwloc_cl_device_topology_amd::raw

24.51.7 type

cl_uint hwloc_cl_device_topology_amd: :type

24.5.1.8 unused

cl_char hwloc_cl_device_topology_amd: :unused[17]
The documentation for this union was generated from the following file:

» opencl.h

24.6 hwloc_component Struct Reference

#include <plugins.h>

Data Fields

* unsigned abi

* int(x init)(unsigned long flags)

« void(x finalize)(unsigned long flags)
» hwloc_component_type_t type

* unsigned long flags

* void * data

24.6.1 Detailed Description

Generic component structure.

Generic components structure, either statically listed by configure in static-components.h or dynamically loaded as a
plugin.

24.6.2 Field Documentation

24.6.2.1 abi

unsigned hwloc_component: :abi

Component ABI version, set to HWLOC_COMPONENT_ABI.

24.6.2.2 data

void* hwloc_component: :data
Component data, pointing to a struct hwloc_disc_component or struct hwloc_xml_component.

Generated by Doxygen

24.7 hwloc_disc_component Struct Reference 237

24.6.2.3 finalize

void (¥ hwloc_component::finalize) (unsigned long flags)

Process-wide component termination callback.

This optional callback is called after unregistering the component from the hwloc core (before unloading the plugin).
flags is always O for now.

Note

If the component uses ltdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

24.6.2.4 flags

unsigned long hwloc_component::flags
Component flags, unused for now.

24.6.2.5 init

int (* hwloc_component::init) (unsigned long flags)

Process-wide component initialization callback.

This optional callback is called when the component is registered to the hwloc core (after loading the plugin).

When the component is built as a plugin, this callback should call hwloc_check_plugin_namespace() and return an
negative error code on error.

flags is always O for now.

Returns

0 on success, or a negative code on error.

Note

If the component uses Itdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

24.6.2.6 type

hwloc_component_type_t hwloc_component::type
Component type.
The documentation for this struct was generated from the following file:

* plugins.h

24.7 hwloc_disc_component Struct Reference

#include <plugins.h>

Data Fields

» const char x name

* unsigned phases

+ unsigned excluded_phases

 struct hwloc_backend =x(x instantiate)(struct hwloc_topology x*topology, struct hwloc_disc_component
xcomponent, unsigned excluded_phases, const void xdatal, const void xdata2, const void xdata3)

* unsigned priority

* unsigned enabled_by_default

Generated by Doxygen

238 Data Structure Documentation

24.7.1 Detailed Description

Discovery component structure.
This is the major kind of components, taking care of the discovery. They are registered by generic components, either
statically-built or as plugins.

24.7.2 Field Documentation
24.7.21 enabled_by_ default

unsigned hwloc_disc_component::enabled_by_default
Enabled by default. If unset, if will be disabled unless explicitly requested.

24.7.2.2 excluded_phases

unsigned hwloc_disc_component::excluded_phases

Component phases to exclude, as an OR'ed set of hwloc_disc_phase_t.

For a GLOBAL component, this usually includes all other phases (~UL).

Other components only exclude types that may bring conflicting topology information. MISC components should likely
not be excluded since they usually bring non-primary additional information.

24.7.2.3 instantiate

struct hwloc_backend *(x hwloc_disc_component::instantiate) (struct hwloc_topology *topology,
struct hwloc_disc_component xcomponent, unsigned excluded_phases, const void *datal, const void
xdata2, const void xdata3)

Instantiate callback to create a backend from the component. Parameters datal, data2, data3 are NULL except for
components that have special enabling routines such as hwloc_topology_set_xml().

24.7.2.4 name
const char* hwloc_disc_component::name
Name. If this component is built as a plugin, this name does not have to match the plugin filename.

24.7.2.5 phases

unsigned hwloc_disc_component: :phases
Discovery phases performed by this component. OR'ed set of hwloc_disc_phase_t.

24.7.2.6 priority

unsigned hwloc_disc_component::priority

Component priority. Used to sort topology->components, higher priority first. Also used to decide between two compo-
nents with the same name.

Usual values are 50 for native OS (or platform) components, 45 for x86, 40 for no-OS fallback, 30 for global components
(xml, synthetic), 20 for pci, 10 for other misc components (opencl etc.).

The documentation for this struct was generated from the following file:

* plugins.h

24.8 hwloc_disc_status Struct Reference

#include <plugins.h>

Generated by Doxygen

24.9 hwloc_distances_s Struct Reference 239

Data Fields

* hwloc_disc_phase_t phase
* unsigned excluded_phases
* unsigned long flags

24.8.1 Detailed Description

Discovery status structure.
Used by the core and backends to inform about what has been/is being done during the discovery process.

24.8.2 Field Documentation
24.8.2.1 excluded_phases

unsigned hwloc_disc_status::excluded_phases
Dynamically excluded phases. If a component decides during discovery that some phases are no longer needed.

24.8.2.2 flags

unsigned long hwloc_disc_status::flags
OR'ed set of hwloc_disc_status_flag_e.

24.8.2.3 phase

hwloc_disc_phase_t hwloc_disc_status: :phase
The current discovery phase that is performed. Must match one of the phases in the component phases field.
The documentation for this struct was generated from the following file:

* plugins.h

24.9 hwloc_distances_s Struct Reference

#include <distances.h>

Data Fields

 unsigned nbobjs

» hwloc_obj_t * objs

* unsigned long kind

» hwloc_uint64_t x values

24.9.1 Detailed Description

Matrix of distances between a set of objects.

The most common matrix contains latencies between NUMA nodes (as reported in the System Locality Distance
Information Table (SLIT) in the ACPI specification), which may or may not be physically accurate. It corresponds
to the latency for accessing the memory of one node from a core in another node. The corresponding kind is
HWLOC_DISTANCES_KIND_MEANS_LATENCY | HWLOC_DISTANCES_KIND_FROM_USER. The name of this dis-
tances structure is "NUMALatency".

The matrix may also contain bandwidths between random sets of objects, possibly provided by the user, as specified
in the kind attribute. Others common distance structures include and "XGMIBandwidth", "XGMIHops", "XeLink«
Bandwidth" and "NVLinkBandwidth".

Pointers objs and values should not be replaced, reallocated, freed, etc. However callers are allowed to modify
kind as well as the contents of objs and values arrays. For instance, if there is a single NUMA node per Package,

Generated by Doxygen

240 Data Structure Documentation

hwloc_get_obj_with_same_locality() may be used to convert between them and replace NUMA nodes in the objs
array with the corresponding Packages. See also hwloc_distances_transform() for applying some transformations to the
structure.

24.9.2 Field Documentation

24.9.2.1 kind

unsigned long hwloc_distances_s::kind

OR'ed set of hwloc_distances_kind_e.

24.9.2.2 nbobjs

unsigned hwloc_distances_s::nbobjs

Number of objects described by the distance matrix.
24.9.2.3 objs

hwloc_obj_t* hwloc_distances_s::0objs

Array of objects described by the distance matrix. These objects are not in any particular order, see
hwloc_distances_obj_index() and hwloc_distances_obj_pair_values() for easy ways to find objects in this array and
their corresponding values.

24.9.2.4 values

hwloc_uint64_tx hwloc_distances_s::values

Matrix of distances between objects, stored as a one-dimension array.

Distance from i-th to j-th object is stored in slot ixnbobjs+j. The meaning of the value depends on the kind attribute.
The documentation for this struct was generated from the following file:

« distances.h

24.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* unsigned depth

* unsigned kind

* unsigned subkind
 unsigned char dont_merge

24.10.1 Detailed Description

Group-specific Object Attributes.

24.10.2 Field Documentation
24.10.2.1 depth

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::depth
Depth of group object. It may change if intermediate Group objects are added.

Generated by Doxygen

24.11 hwloc_info_s Struct Reference 241

24.10.2.2 dont_merge

unsigned char hwloc_obj_attr_u::hwloc_group_attr_s::dont_merge

Flag preventing groups from being automatically merged with identical parent or children.

24.10.2.3 kind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::kind
Internally-used kind of group.

24.10.2.4 subkind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::subkind
Internally-used subkind to distinguish different levels of groups with same kind.
The documentation for this struct was generated from the following file:

* hwloc.h

24.11 hwloc_info_s Struct Reference

#include <hwloc.h>

Data Fields

» char x name
« char * value

24.11.1 Detailed Description

Object info attribute (name and value strings)

See also

Consulting and Adding Info Attributes

24.11.2 Field Documentation
24.11.2.1 name

charx hwloc_info_s::name
Info name.

24.11.2.2 value

char*x hwloc_info_s::value
Info value.
The documentation for this struct was generated from the following file:

* hwloc.h

24.12 hwloc_location Struct Reference

#include <memattrs.h>

Data Structures

 union hwloc_location_u

Generated by Doxygen

242 Data Structure Documentation

Data Fields

» enum hwloc_location_type_e type

* union hwloc_location::hwloc_location_u location
24.12.1 Detailed Description

Where to measure attributes from.

24.12.2 Field Documentation
24.12.2.1 location

union hwloc_location::hwloc_location_u hwloc_location::location

24.12.2.2 type

enum hwloc_location_type_e hwloc_location::type
Type of location.
The documentation for this struct was generated from the following file:

* memattrs.h

24.13 hwloc_location::hwloc_location_u Union Reference

#include <memattrs.h>

Data Fields
* hwloc_cpuset_t cpuset
» hwloc_obj_t object
24.13.1 Detailed Description

Actual location.

24.13.2 Field Documentation

24.13.2.1 cpuset

hwloc_cpuset_t hwloc_location::hwloc_location_u::cpuset

Location as a cpuset, when the location type is HWLOC_LOCATION_TYPE_CPUSET.
24.13.2.2 object

hwloc_obj_t hwloc_location::hwloc_location_u::object
Location as an object, when the location type is HWLOC_LOCATION_TYPE_OBJECT.
The documentation for this union was generated from the following file:

* memattrs.h

24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page -
type_s Struct Reference

#include <hwloc.h>

Generated by Doxygen

24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference

243

Data Fields

* hwloc_uint64_t size
* hwloc_uint64_t count

24.14.1 Detailed Description
Array of local memory page types, NULL if no local memory and page_types is 0.

The array is sorted by increasing size fields. It contains page_types_len slots.

24.14.2 Field Documentation
24.14.2.1 count

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::count
Number of pages of this size.

24.14.2.2 size

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::size
Size of pages.
The documentation for this struct was generated from the following file:

* hwloc.h

24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference

#include <hwloc.h>

Data Structures

« struct hwloc_memory_page_type_s

Data Fields

* hwloc_uint64_t local_memory
* unsigned page_types_len
« struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s * page_types

24.15.1 Detailed Description
NUMA node-specific Object Attributes.

24.15.2 Field Documentation
24.15.2.1 local_memory

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::local_memory
Local memory (in bytes)

24.15.2.2 page_types

struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s * hwloc_obj_attr_u«+

:thwloc_numanode_attr_s::page_types

Generated by Doxygen

244 Data Structure Documentation

24.15.2.3 page_types_len

unsigned hwloc_obj_attr_u::hwloc_numanode_attr_s::page_types_len
Size of array page_types.
The documentation for this struct was generated from the following file:

* hwloc.h

24.16 hwloc_obj Struct Reference

#include <hwloc.h>

Data Fields

» hwloc_obj_type_t type

* char * subtype

* unsigned os_index

« char x name

» hwloc_uint64_t total_memory
* union hwloc_obj_attr_u x attr

* int depth

* unsigned logical_index

« struct hwloc_obj x next_cousin
« struct hwloc_obj * prev_cousin
« struct hwloc_obj * parent

* unsigned sibling_rank

« struct hwloc_obj * next_sibling
« struct hwloc_obj * prev_sibling
* int symmetric_subtree

* hwloc_cpuset_t cpuset

» hwloc_cpuset_t complete_cpuset
* hwloc_nodeset_t nodeset

» hwloc_nodeset_t complete_nodeset
« struct hwloc_info_s * infos
 unsigned infos_count

 void * userdata

» hwloc_uint64_t gp_index

List and array of normal children below this object (except Memory, I/0 and Misc children).

* unsigned arity

+ struct hwloc_obj *x children
« struct hwloc_obj x first_child
« struct hwloc_obj * last_child

List of Memory children below this object.

* unsigned memory_arity
« struct hwloc_obj « memory_first_child

List of 1/0 children below this object.

* unsigned io_arity
« struct hwloc_obj x io_first_child

List of Misc children below this object.

* unsigned misc_arity
« struct hwloc_obj * misc_first_child

Generated by Doxygen

24.16 hwloc_obj Struct Reference 245

24.16.1 Detailed Description

Structure of a topology object.
Applications must not modify any field except hwloc_obj.userdata.

24.16.2 Field Documentation
24.16.2.1 arity

unsigned hwloc_obj::arity
Number of normal children. Memory, Misc and I/O children are not listed here but rather in their dedicated children list.

24.16.2.2 attr

union hwloc_obj_attr_ux hwloc_obj::attr
Object type-specific Attributes, may be NULL if no attribute value was found.

24.16.2.3 children

struct hwloc_obJj*x hwloc_obj::children
Normal children, children[0 .. arity -1].

24.16.2.4 complete_cpuset

hwloc_cpuset_t hwloc_obj::complete_cpuset

The complete CPU set of processors of this object,.

This may include not only the same as the cpuset field, but also some CPUs for which topology information is unknown or
incomplete, some offlines CPUs, and the CPUs that are ignored when the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED
flag is not set. Thus no corresponding PU object may be found in the topology, because the precise position is undefined.

It is however known that it would be somewhere under this object.

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.5 complete_nodeset

hwloc_nodeset_t hwloc_obj::complete_nodeset

The complete NUMA node set of this object,.

This may include not only the same as the nodeset field, but also some NUMA nodes for which topol-
ogy information is unknown or incomplete, some offlines nodes, and the nodes that are ignored when the
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED flag is not set. Thus no corresponding NUMA node ob-
ject may be found in the topology, because the precise position is undefined. It is however known that it would be
somewhere under this object.

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit is set in
complete_nodeset.

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.6 cpuset

hwloc_cpuset_t hwloc_obj::cpuset

CPUs covered by this object.

Generated by Doxygen

246 Data Structure Documentation

This is the set of CPUs for which there are PU objects in the topology under this object, i.e. which are known to be
physically contained in this object and known how (the children path between this object and the PU objects).

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these CPUs may be
online but not allowed for binding, see hwloc_topology_get_allowed_cpuset().

Note

All objects have non-NULL CPU and node sets except Misc and /O objects.

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.7 depth

int hwloc_obj::depth

Vertical index in the hierarchy.

For normal objects, this is the depth of the horizontal level that contains this object and its cousins of the same type. If
the topology is symmetric, this is equal to the parent depth plus one, and also equal to the number of parent/child links
from the root object to here.

For special objects (NUMA nodes, I/0O and Misc) that are not in the main tree, this is a special negative value that
corresponds to their dedicated level, see hwloc_get_type_depth() and hwloc_get_type_depth_e. Those special values
can be passed to hwloc functions such hwloc_get_nbobjs_by_depth() as usual.

24.16.2.8 first_child
struct hwloc_obj* hwloc_obj::first_child
First normal child.

24.16.2.9 gp_index

hwloc_uint64_t hwloc_obj::gp_index

Global persistent index. Generated by hwloc, unique across the topology (contrary to os_index) and persistent across
topology changes (contrary to logical_index). Mostly used internally, but could also be used by application to identify
objects.

24.16.2.10 infos

struct hwloc_info_s* hwloc_obj::infos

Array of info attributes (name and value strings).

24.16.2.11 infos_count

unsigned hwloc_obj::infos_count

Size of infos array.

24.16.2.12 io_arity

unsigned hwloc_obj::io_arity

Number of I/O children. These children are listed in io_first_child.

24.16.2.13 io_first_child

struct hwloc_obj* hwloc_obj::io_first_child
First 1/0O child. Bridges, PCI and OS devices are listed here (io_arity and io_first_child) instead of in the
normal children list. See also hwloc_obj_type_is_io().

Generated by Doxygen

24.16 hwloc_obj Struct Reference 247

24.16.2.14 last_child

struct hwloc_obJj* hwloc_obj::last_child
Last normal child.

24.16.2.15 logical_index

unsigned hwloc_obj::logical_index

Horizontal index in the whole list of similar objects, hence guaranteed unique across the entire machine. Could be
a "cousin_rank" since it's the rank within the "cousin" list below Note that this index may change when restricting the
topology or when inserting a group.

24.16.2.16 memory_arity
unsigned hwloc_obj::memory_arity
Number of Memory children. These children are listed in memory_first_child.

24.16.2.17 memory_first_child

struct hwloc_obj* hwloc_obj::memory_first_child

First Memory child. NUMA nodes and Memory-side caches are listed here (memory_arity and memory_first«
_child) instead of in the normal children list. See also hwloc_obj_type_is_memory().

A memory hierarchy starts from a normal CPU-side object (e.g. Package) and ends with NUMA nodes as leaves. There
might exist some memory-side caches between them in the middle of the memory subtree.

24.16.2.18 misc_arity
unsigned hwloc_obj::misc_arity
Number of Misc children. These children are listed inmisc_first_child.

24.16.2.19 misc_first_child

struct hwloc_obJj* hwloc_obj::misc_first_child
First Misc child. Misc objects are listed here (misc_arity and misc_first_child) instead of in the normal
children list.

24.16.2.20 name

char*x hwloc_obj::name

Object-specific name if any. Mostly used for identifying OS devices and Misc objects where a name string is more useful
than numerical indexes.

24.16.2.21 next_cousin

struct hwloc_obj* hwloc_obj::next_cousin

Next object of same type and depth.

24.16.2.22 next_sibling

struct hwloc_obj* hwloc_obj::next_sibling
Next object below the same parent (inside the same list of children).

Generated by Doxygen

248 Data Structure Documentation

24.16.2.23 nodeset

hwloc_nodeset_t hwloc_obj::nodeset

NUMA nodes covered by this object or containing this object.

This is the set of NUMA nodes for which there are NUMA node objects in the topology under or above this object, i.e.
which are known to be physically contained in this object or containing it and known how (the children path between this
object and the NUMA node objects).

In the end, these nodes are those that are close to the current object. Function hwloc_get_local_numanode_objs() may
be used to list those NUMA nodes more precisely.

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these nodes may be
online but not allowed for allocation, see hwloc_topology_get_allowed_nodeset().

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit may be set in
nodeset.

Note

All objects have non-NULL CPU and node sets except Misc and /O objects.
Its value must not be changed, hwloc_bitmap_dup() must be used instead.

24.16.2.24 os_index

unsigned hwloc_obj::os_index

OS-provided physical index number. It is not guaranteed unique across the entire machine, except for PUs and NUMA
nodes. Set to HWLOC_UNKNOWN_INDEX if unknown or irrelevant for this object.

24.16.2.25 parent

struct hwloc_obj* hwloc_obj::parent

Parent, NULL if root (Machine object)

24.16.2.26 prev_cousin

struct hwloc_obj* hwloc_obj::prev_cousin
Previous object of same type and depth.

24.16.2.27 prev_sibling

struct hwloc_obj* hwloc_obj::prev_sibling

Previous object below the same parent (inside the same list of children).

24.16.2.28 sibling_rank

unsigned hwloc_obj::sibling_rank

Index in parent's children[] array. Or the index in parent's Memory, I/O or Misc children list.
24.16.2.29 subtype

char*x hwloc_obj::subtype

Subtype string to better describe the type field.

24.16.2.30 symmetric_subtree

int hwloc_obj::symmetric_subtree

Set if the subtree of normal objects below this object is symmetric, which means all normal children and their children
have identical subtrees.

Memory, I/O and Misc children are ignored.

If set in the topology root object, Istopo may export the topology as a synthetic string.

Generated by Doxygen

24.17 hwloc_obj_attr_u Union Reference 249

24.16.2.31 total_memory

hwloc_uint64_t hwloc_obj::total_memory

Total memory (in bytes) in NUMA nodes below this object.
24.16.2.32 type

hwloc_obj_type_t hwloc_obj::type

Type of object.

24.16.2.33 userdata

void* hwloc_obj::userdata

Application-given private data pointer, initialized to NULL, use it as you wish. See hwloc_topology_set_userdata_export_callback()
in hwloc/export.h if you wish to export this field to XML.

The documentation for this struct was generated from the following file:

* hwloc.h

24.17 hwloc_obj_attr_u Union Reference

#include <hwloc.h>

Data Structures

« struct hwloc_bridge_attr_s
« struct hwloc_cache_atir_s
« struct hwloc_group_attr_s
« struct hwloc_numanode_attr_s
« struct hwloc_osdev_attr_s
« struct hwloc_pcidev_attr_s

Data Fields

+ struct hwloc_obj_attr_u::hwloc_numanode_attr_s numanode
« struct hwloc_obj_attr_u::hwloc_cache_attr_s cache

« struct hwloc_obj_attr_u::hwloc_group_attr_s group

« struct hwloc_obj_attr_u::hwloc_pcidev_attr_s pcidev

« struct hwloc_obj_attr_u::hwloc_bridge_attr_s bridge

« struct hwloc_obj_attr_u::hwloc_osdev_attr_s osdev

24.17.1 Detailed Description
Object type-specific Attributes.

24.17.2 Field Documentation
24.17.2.1 bridge

struct hwloc_obj_attr_u::hwloc_bridge_attr_s hwloc_obj_attr_u::bridge

24.17.2.2 cache

struct hwloc_obj_attr_ u::hwloc_cache_attr_s hwloc_obj_attr_u::cache

Generated by Doxygen

250 Data Structure Documentation

24.17.2.3 group

struct hwloc_obj_attr_u::hwloc_group_attr_s hwloc_obj_attr_u::group

24.17.2.4 numanode

struct hwloc_obj_attr_u::hwloc_numanode_attr_s hwloc_obj_attr_u::numanode

24.17.2.5 osdev

struct hwloc_obj_attr_u::hwloc_osdev_attr_s hwloc_obj_attr_u::osdev

24.17.2.6 pcidev

struct hwloc_obj_attr_u::hwloc_pcidev_attr_s hwloc_obj_attr_u::pcidev
The documentation for this union was generated from the following file:

* hwloc.h

24.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference

#include <hwloc.h>

Data Fields

» hwloc_obj_osdev_type_t type

24.18.1 Detailed Description
OS Device specific Object Attributes.

24.18.2 Field Documentation
24.18.2.1 type

hwloc_obj_osdev_type_t hwloc_obj_attr_u::hwloc_osdev_attr_s::type
The documentation for this struct was generated from the following file:

* hwloc.h

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference

#include <hwloc.h>

Data Fields

 unsigned short domain
 unsigned char bus

* unsigned char dev
 unsigned char func

* unsigned short class_id

* unsigned short vendor_id
 unsigned short device_id

« unsigned short subvendor_id

Generated by Doxygen

24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 251

+ unsigned short subdevice_id
 unsigned char revision
« float linkspeed

24.19.1 Detailed Description
PCI Device specific Object Attributes.

24.19.2 Field Documentation

24.19.2.1 bus

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::bus

Bus number (yy in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.2 class_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::class_id
The class number (first two bytes, without the prog_if).

24.19.2.3 dev

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::dev

Device number (zz in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.4 device_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::device_id
Device ID (yyyy in [xxxx:yyyy]).

24.19.2.5 domain

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::domain
Domain number (xxxx in the PCI BDF notation xxxx:yy:zz.t). Only 16bits PCl domains are supported by default.
24.19.2.6 func

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::func
Function number (t in the PCI BDF notation xxxx:yy:zz.t).

24.19.2.7 linkspeed

float hwloc_obj_attr_u::hwloc_pcidev_attr_s::linkspeed

Link speed in GB/s. This datarate is the currently configured speed of the entire PCI link (sum of the bandwidth of all
PCI lanes in that link). It may change during execution since some devices are able to slow their PCI links down when
idle.

24.19.2.8 revision

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::revision
Revision number.

24.19.2.9 subdevice_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subdevice_id

Sub-Device ID.

Generated by Doxygen

252 Data Structure Documentation

24.19.2.10 subvendor_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subvendor_id

Sub-Vendor ID.

24.19.2.11 vendor_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::vendor_id
Vendor ID (xxxx in [xxxx:yyyy]).
The documentation for this struct was generated from the following file:

* hwloc.h

24.20 hwloc_topology_cpubind_support Struct Reference

#include <hwloc.h>

Data Fields

+ unsigned char set_thisproc_cpubind
 unsigned char get_thisproc_cpubind

* unsigned char set_proc_cpubind

 unsigned char get_proc_cpubind

 unsigned char set_thisthread_cpubind
 unsigned char get_thisthread_cpubind
 unsigned char set_thread_cpubind
 unsigned char get_thread_cpubind
 unsigned char get_thisproc_last_cpu_location
* unsigned char get_proc_last_cpu_location

« unsigned char get_thisthread_last_cpu_location

24.20.1 Detailed Description

Flags describing actual PU binding support for this topology.

A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous objects).
24.20.2 Field Documentation

24.20.2.1 get_proc_cpubind

unsigned char hwloc_topology_cpubind_support::get_proc_cpubind

Getting the binding of a whole given process is supported.

24.20.2.2 get_proc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_proc_last_cpu_location
Getting the last processors where a whole process ran is supported

24.20.2.3 get_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisproc_cpubind
Getting the binding of the whole current process is supported.

Generated by Doxygen

24.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference

253

24.20.2.4 get_thisproc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisproc_last_cpu_location
Getting the last processors where the whole current process ran is supported
24.20.2.5 get_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisthread_cpubind
Getting the binding of the current thread only is supported.

24.20.2.6 get_thisthread_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisthread_last_cpu_location
Getting the last processors where the current thread ran is supported

24.20.2.7 get_thread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thread_cpubind
Getting the binding of a given thread only is supported.

24.20.2.8 set_proc_cpubind

unsigned char hwloc_topology_cpubind_support::set_proc_cpubind
Binding a whole given process is supported.

24.20.2.9 set_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisproc_cpubind
Binding the whole current process is supported.

24.20.2.10 set_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisthread_cpubind
Binding the current thread only is supported.

24.20.2.11 set_thread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thread_cpubind
Binding a given thread only is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

24.21 hwloc_topology_diff_u::hwloc_topology_ diff_generic_s Struct

Reference
#include <diff.h>

Data Fields

» hwloc_topology_diff_type_t type
 union hwloc_topology_diff_u * next

Generated by Doxygen

254 Data Structure Documentation

24.21.1 Field Documentation
24.21.1.1 next

union hwloc_topology_diff ux hwloc_topology_diff_u::hwloc_topology_diff_generic_s::next

24.21.1.2 type

hwloc_topology_diff type_t hwloc_topology_diff_ u::hwloc_topology_diff_ generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.22 hwloc_topology_diff obj_attr_u::hwloc_topology diff obj_attr -
generic_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type

24.22.1 Field Documentation
24.22.1.1 type

hwloc_topology_diff_ obj_attr_type_t hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr«
_generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.23 hwloc_topology_diff _u::hwloc_topology_ diff_obj_attr_s Struct
Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_type_t type

« union hwloc_topology_diff_u * next

* int obj_depth

* unsigned obj_index

« union hwloc_topology_diff_obj_attr_u diff

24.23.1 Field Documentation
24.23.1.1 diff

union hwloc_topology_diff obj_attr_u hwloc_topology_diff_u::hwloc_topology_diff_ obj_attr_s::diff

24.23.1.2 next

union hwloc_topology_diff ux hwloc_topology_diff_ u::hwloc_topology_diff_ obj_attr_s::next

Generated by Doxygen

24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference

255

24.23.1.3 obj_depth

int hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::obj_depth

24.23.1.4 obj_index

unsigned hwloc_topology_diff_ u::hwloc_topology_diff obj_attr_s::obj_index

24.23.1.5 type

hwloc_topology_diff type_t hwloc_topology_diff_ u::hwloc_topology_diff_obj_attr_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology diff _obj_attr_--

string_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
 char * name

* char x oldvalue

« char * newvalue

24.24.1 Detailed Description

String attribute modification with an optional name.

24.24.2 Field Documentation
24.24.2.1 name

charx hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s::name

24.24.2.2 newvalue

char*x hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_string_s::newvalue

24.24.2.3 oldvalue

charx hwloc_topology_diff_obj_attr_u::hwloc_topology_diff obj_attr_string_s::oldvalue

24.24.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr«

_string_s::type

The documentation for this struct was generated from the following file:

« diff.h

Generated by Doxygen

256 Data Structure Documentation

24.25 hwloc_topology_diff_obj_attr_u Union Reference

#include <diff.h>

Data Structures

« struct hwloc_topology_diff_obj_attr_generic_s

« struct hwloc_topology_diff_obj_attr_string_s

« struct hwloc_topology_diff_obj_attr_uint64_s
Data Fields

« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s generic
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s uint64
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s string

24.25.1 Detailed Description

One object attribute difference.

24.25.2 Field Documentation

24.25.2.1 generic

struct hwloc_topology_diff_ obj_attr_u::hwloc_topology_diff_obj_attr_generic_s hwloc_topology_<«
diff_obj_attr_u::generic

24.25.2.2 string

struct hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_string_s hwloc_topology_diff«+
_obj_attr_u::string

24.25.2.3 uint64

struct hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s hwloc_topology_diff«+
_obj_attr_u::uinto64
The documentation for this union was generated from the following file:

« diff.h

24.26 hwloc_topology_diff _obj_attr_u::hwloc_topology diff obj_attr_
uint64_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
* hwloc_uint64_t index

* hwloc_uint64 t oldvalue

» hwloc_uint64_t newvalue

24.26.1 Detailed Description

Integer attribute modification with an optional index.

Generated by Doxygen

24.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 257

24.26.2 Field Documentation
24.26.2.1 index

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff obj_attr_uint64_s::index

24.26.2.2 newvalue

hwloc_uint64_t hwloc_topology_diff obj_attr_u::hwloc_topology diff obj_attr_uint64_s::newvalue

24.26.2.3 oldvalue

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s::oldvalue

24.26.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_ diff obj_attr_u::hwloc_topology_diff_ obj_attr«+
_uint64_s::type
The documentation for this struct was generated from the following file:

« diff.h

24.27 hwloc_topology_diff _u::hwloc_topology_ diff too_complex_s Struct
Reference

#include <diff.h>

Data Fields
» hwloc_topology_diff_type_t type
« union hwloc_topology_diff_u % next
* int obj_depth
* unsigned obj_index
24.27.1 Field Documentation
24.27.1.1 next

union hwloc_topology_diff ux hwloc_topology_diff_ u::hwloc_topology_diff_ too_complex_s::next

24.27.1.2 obj_depth

int hwloc_topology_diff_ u::hwloc_topology_diff_ too_complex_s::obj_depth

24.27.1.3 obj_index

unsigned hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_index

24.27.1.4 type

hwloc_topology_diff_ type_t hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::type
The documentation for this struct was generated from the following file:

« diff.h

Generated by Doxygen

258 Data Structure Documentation

24.28 hwloc_topology_diff u Union Reference

#include <diff.h>

Data Structures

« struct hwloc_topology_diff_generic_s
« struct hwloc_topology_diff_obj_attr_s
« struct hwloc_topology_diff_too_complex_s

Data Fields

« struct hwloc_topology_diff_u::hwloc_topology_diff_generic_s generic
« struct hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s obj_attr
« struct hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s too_complex

24.28.1 Detailed Description

One element of a difference list between two topologies.

24.28.2 Field Documentation
24.28.2.1 generic

struct hwloc_topology_diff_u::hwloc_topology_diff generic_s hwloc_topology_diff_u::generic

24.28.2.2 obj_attr

struct hwloc_topology_diff u::hwloc_topology_diff obj_attr_s hwloc_topology_diff_u::obj_attr

24.28.2.3 too_complex

struct hwloc_topology_diff u::hwloc_topology_diff too_complex_s hwloc_topology_diff_u::too_complex
The documentation for this union was generated from the following file:

« diff.h

24.29 hwloc_topology_discovery_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char pu

 unsigned char numa

 unsigned char numa_memory

+ unsigned char disallowed_pu

« unsigned char disallowed_numa
« unsigned char cpukind_efficiency

24.29.1 Detailed Description

Flags describing actual discovery support for this topology.

Generated by Doxygen

24.30 hwloc_topology _membind_support Struct Reference 259

24.29.2 Field Documentation
24.29.2.1 cpukind_efficiency

unsigned char hwloc_topology_discovery_support::cpukind_efficiency

Detecting the efficiency of CPU kinds is supported, see Kinds of CPU cores.

24.29.2.2 disallowed_numa

unsigned char hwloc_topology_discovery_support::disallowed_numa
Detecting and identifying NUMA nodes that are not available to the current process is supported.

24.29.2.3 disallowed_pu

unsigned char hwloc_topology_discovery_support::disallowed_pu
Detecting and identifying PU objects that are not available to the current process is supported.

24.29.2.4 numa

unsigned char hwloc_topology_discovery_support::numa

Detecting the number of NUMA nodes is supported.

24.29.2.5 numa_memory

unsigned char hwloc_topology_discovery_support::numa_memory
Detecting the amount of memory in NUMA nodes is supported.

24.29.26 pu

unsigned char hwloc_topology_discovery_support: :pu
Detecting the number of PU objects is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

24.30 hwloc_topology _membind_support Struct Reference

#include <hwloc.h>

Data Fields

 unsigned char set_thisproc_membind
 unsigned char get_thisproc_membind

* unsigned char set_proc_membind
 unsigned char get_proc_membind

* unsigned char set_thisthread_membind
* unsigned char get_thisthread_membind
* unsigned char set_area_membind

+ unsigned char get_area_membind
 unsigned char alloc_membind

* unsigned char firsttouch_membind

* unsigned char bind_membind

* unsigned char interleave_membind

* unsigned char nexttouch_membind

+ unsigned char migrate_membind

Generated by Doxygen

260 Data Structure Documentation

« unsigned char get_area_memlocation
* unsigned char weighted_interleave_membind

24.30.1 Detailed Description

Flags describing actual memory binding support for this topology.
A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous objects).

24.30.2 Field Documentation

24.30.2.1 alloc_membind

unsigned char hwloc_topology_membind_support::alloc_membind
Allocating a bound memory area is supported.

24.30.2.2 bind_membind

unsigned char hwloc_topology_membind_support::bind_membind

Bind policy is supported.

24.30.2.3 firsttouch_membind

unsigned char hwloc_topology_membind_support::firsttouch_membind
First-touch policy is supported.

24.30.2.4 get_area_membind

unsigned char hwloc_topology_membind_support::get_area_membind
Getting the binding of a given memory area is supported.

24.30.2.5 get_area_memlocation

unsigned char hwloc_topology_membind_support::get_area_memlocation
Getting the last NUMA nodes where a memory area was allocated is supported
24.30.2.6 get_proc_membind

unsigned char hwloc_topology_membind_support::get_proc_membind
Getting the binding of a whole given process is supported.

24.30.2.7 get_thisproc_membind

unsigned char hwloc_topology_membind_support::get_thisproc_membind
Getting the binding of the whole current process is supported.

24.30.2.8 get_thisthread_membind

unsigned char hwloc_topology_membind_support::get_thisthread_membind
Getting the binding of the current thread only is supported.

24.30.2.9 interleave_membind

unsigned char hwloc_topology_membind_support::interleave_membind
Interleave policy is supported.

Generated by Doxygen

24.31 hwloc_topology_misc_support Struct Reference 261

24.30.2.10 migrate_membind

unsigned char hwloc_topology_membind_support:

Migration flags is supported.

24.30.2.11 nexttouch_membind

unsigned char hwloc_topology_membind_support:

Next-touch migration policy is supported.

24.30.2.12 set_area_membind

unsigned char hwloc_topology_membind_support:

Binding a given memory area is supported.

24.30.2.13 set_proc_membind

unsigned char hwloc_topology_membind_support:

Binding a whole given process is supported.

24.30.2.14 set_thisproc_membind

unsigned char hwloc_topology_membind_support:

Binding the whole current process is supported.

24.30.2.15 set_thisthread_membind

unsigned char hwloc_topology_membind_support:

Binding the current thread only is supported.

24.30.2.16 weighted_interleave_membind

unsigned char hwloc_topology_membind_support:

Weighted interleave policy is supported.

:migrate_membind

:nexttouch_membind

:set_area_membind

:set_proc_membind

:set_thisproc_membind

:set_thisthread_membind

:welghted_interleave_membind

The documentation for this struct was generated from the following file:

* hwloc.h

24.31 hwloc_topology_misc_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char imported_support

24.31.1 Detailed Description

Flags describing miscellaneous features.

Generated by Doxygen

262 Data Structure Documentation

24.31.2 Field Documentation
24.31.2.1 imported_support

unsigned char hwloc_topology_misc_support::imported_support

Support was imported when importing another topology, see HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT.
The documentation for this struct was generated from the following file:

* hwloc.h

24.32 hwloc_topology_ support Struct Reference

#include <hwloc.h>

Data Fields

« struct hwloc_topology_discovery_support * discovery
« struct hwloc_topology_cpubind_support * cpubind

« struct hwloc_topology_membind_support * membind
« struct hwloc_topology_misc_support * misc

24.32.1 Detailed Description

Set of flags describing actual support for this topology.
This is retrieved with hwloc_topology_get_support() and will be valid until the topology object is destroyed. Note: the
values are correct only after discovery.

24.32.2 Field Documentation
24.32.2.1 cpubind

struct hwloc_topology_cpubind_support* hwloc_topology_support: :cpubind

24.32.2.2 discovery

struct hwloc_topology_discovery_support* hwloc_topology_support::discovery

24.32.2.3 membind

struct hwloc_topology_membind_ support* hwloc_topology_support::membind

24.32.2.4 misc

struct hwloc_topology_misc_support* hwloc_topology_support::misc
The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

Index

abi
hwloc_component, 236

Add distances between objects, 178
hwloc_distances_add_commit, 179
hwloc_distances_add_create, 179
hwloc_distances_add_flag_e, 178

HWLOC_DISTANCES_ADD_FLAG_GROUP, 178
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATEHWLOC LOCAL_NUMANODE_FLAG_INTERSECT LOCALITY,

179
hwloc_distances_add_handle t, 178
hwloc_distances_add_values, 179

alloc_membind
hwloc_topology_membind_support, 260
API version, 91
HWLOC_API_VERSION, 91
HWLOC_COMPONENT_ABI, 91
hwloc_get_api_version, 92
arity
hwloc_obj, 245
associativity
hwloc_obj_attr_u::hwloc_cache_attr_s, 234
attr
hwloc_obj, 245

bind_membind
hwloc_topology_membind_support, 260
bridge
hwloc_obj_attr_u, 249

bus
hwloc_cl_device_topology_amd, 235
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
cache

hwloc_obj_attr_u, 249

hwloc_obj_attr_u::hwloc_pcidev_atir_s, 251

Command-Line Tools, 19
Comparing memory node attributes for finding where to al-

locate on, 181
hwloc_get_local_numanode_objs, 185
HWLOC_LOCAL_NUMANODE_FLAG_ALL, 183
hwloc_local_numanode_flag_e, 183

183

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY,

183

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY,

183
HWLOC_LOCATION_TYPE_CPUSET, 183
hwloc_location_type_e, 183
HWLOC_LOCATION_TYPE_OBJECT, 183
hwloc_memattr_get_best_initiator, 185
hwloc_memattr_get_best_target, 186
hwloc_memattr_get_by name, 186
hwloc_memattr_get_initiators, 187
hwloc_memattr_get_targets, 187
hwloc_memattr_get_value, 188
HWLOC_MEMATTR_ID_BANDWIDTH, 184
HWLOC_MEMATTR_ID_CAPACITY, 184
hwloc_memattr_id e, 183
HWLOC_MEMATTR_ID_LATENCY, 184
HWLOC_MEMATTR_ID_LOCALITY, 184
HWLOC_MEMATTR_ID _READ_BANDWIDTH, 184
HWLOC MEMATTR_ID READ_LATENCY, 185
hwloc_memattr_id_t, 182
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH, 184
HWLOC_MEMATTR_ID_WRITE_LATENCY, 185
hwloc_topology_get_default_nodeset, 188

Compiling software on top of hwloc's C API, 13

Changing the Source of Topology Discovery, 120 _Iplete cpuset

HWLOC_TOPOLOGY_COMPONENTS_FLAG_| BLACKLIS

‘hwloc_obj, 245
121 complete_nodeset
hwloc_topology_components_flag_e, 120 hwloc_obj, 245

hwloc_topology_set_components, 121
hwloc_topology_set_pid, 121
hwloc_topology_set_synthetic, 121
hwloc_topology_set_xml, 122
hwloc_topology_set_xmlbuffer, 122

Components and plugins, 59
Components and Plugins: Core functions to be used by
components, 223
hwloc__insert_object_by_cpuset, 224
hwloc_alloc_setup_object, 224

children . hwloc_hide_errors, 224
hvaOC_obJ, 245 hwloc_insert_object_by parent, 224
class_id

Generated by Doxygen

264 INDEX

hwloc_obj_add_children_sets, 225 hwloc_cpuset_to_nodeset, 153
HWLOC_SHOW_ALL_ERRORS, 223 Converting between Object Types and Attributes, and
HWLOC_SHOW_CRITICAL_ERRORS, 223 Strings, 104
hwloc_topology_reconnect, 225 hwloc_obj_attr_snprintf, 105
Components and Plugins: Discovery components and hwloc_obj_type_snprintf, 105
backends, 220 hwloc_obj_type_string, 105
hwloc_backend_alloc, 221 hwloc_type_sscanf, 106
hwloc_backend_enable, 222 hwloc_type_sscanf_as_depth, 106
HWLOC_DISC_PHASE_ANNOTATE, 221 count
HWLOC_DISC_PHASE_CPU, 221 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type
hwloc_disc_phase_e, 221 243
HWLOC_DISC_PHASE_GLOBAL, 221 CPU and Memory Binding Overview, 27
HWLOC_DISC_PHASE_10, 221 CPU and node sets of entire topologies, 150
HWLOC_DISC_PHASE_ MEMORY, 221 hwloc_topology_get_allowed_cpuset, 150
HWLOC_DISC_PHASE_MISC, 221 hwloc_topology_get_allowed_nodeset, 150
HWLOC_DISC_PHASE_PCI, 221 hwloc_topology_get_complete_cpuset, 151
hwloc_disc_phase_t, 221 hwloc_topology_get_complete_nodeset, 151
HWLOC_DISC_PHASE_TWEAK, 221 hwloc_topology_get_topology_cpuset, 151
hwloc_disc_status_flag_e, 221 hwloc_topology_get_topology_nodeset, 152
HWLOC_DISC_STATUS FLAG_GOT_ALLOWED_RESCRIRGIESNg, 108
221 hwloc_cpubind_flags_t, 109
Components and Plugins: distances, 228 HWLOC_CPUBIND_NOMEMBIND, 109
hwloc_backend_distances_add_commit, 229 HWLOC_CPUBIND_PROCESS, 109
hwloc_backend_distances_add_create, 229 HWLOC_CPUBIND_STRICT, 109
hwloc_backend_distances_add_handle_t, 229 HWLOC_CPUBIND_THREAD, 109
hwloc_backend_distances_add_values, 229 hwloc_get_cpubind, 110
Components and Plugins: Filtering objects, 225 hwloc_get_last_cpu_location, 110
hwloc_filter_check_keep_object, 225 hwloc_get_proc_cpubind, 110
hwloc_filter_check_keep_object_type, 225 hwloc_get_proc_last_cpu_location, 110
hwloc_filter_check_osdev_subtype_important, 226 hwloc_get_thread_cpubind, 111
hwloc_filter_check_pcidev_subtype_important, 226 hwloc_set_cpubind, 111
Components and Plugins: finding PCI objects during other hwloc_set_proc_cpubind, 111
discoveries, 227 hwloc_set_thread_cpubind, 112
hwloc_pci_find_by_busid, 228 cpubind
hwloc_pci_find_parent_by_busid, 228 hwloc_topology_support, 262
Components and Plugins: Generic components, 222 cpukind_efficiency
HWLOC_COMPONENT_TYPE_DISC, 222 hwloc_topology_discovery_support, 259
hwloc_component_type_e, 222 cpuset
hwloc_component_type_t, 222 hwloc_location::hwloc_location_u, 242
HWLOC_COMPONENT_TYPE_XML, 222 hwloc_obj, 245

hwloc_plugin_check_namespace, 223
Components and Plugins: helpers for PCI discovery, 226 ~ data

hwloc_pcidisc_check_bridge_type, 226 hwloc_cl_device_topology_amd, 235
hwloc_pcidisc_find_bridge_buses, 226 hwloc_component, 236
hwloc_pcidisc_find_cap, 227 depth
hwloc_pcidisc_find_linkspeed, 227 hwloc_obj, 246
hwloc_pcidisc_tree_attach, 227 hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
hwloc_pcidisc_tree_insert_by busid, 227 hwloc_obj_attr_u::hwloc_cache_atir_s, 234
Consulting and Adding Info Attributes, 107 hwloc_obj_attr_u::hwloc_group_attr_s, 240
hwloc_obj_add_info, 107 dev
hwloc_obj_get_info_by_name, 107 hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
hwloc_obj_set_subtype, 107 device
Converting between CPU sets and node sets, 152 hwloc_cl_device_topology_amd, 235
hwloc_cpuset_from_nodeset, 152 device_id

Generated by Doxygen

INDEX

265

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
diff
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
254
disable
hwloc_backend, 231
disallowed_numa
hwloc_topology_discovery_support, 259
disallowed_pu
hwloc_topology_discovery_support, 259
discover
hwloc_backend, 231
discovery
hwloc_topology_support, 262
Distributing items over a topology, 149
hwloc_distrib, 149
HWLOC_DISTRIB_FLAG_REVERSE, 149
hwloc_distrib_flags_e, 149
domain
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
dont_merge
hwloc_obj_attr_u::hwloc_group_attr_s, 240
downstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
downstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233

Embedding hwloc in Other Software, 63
enabled_by_default
hwloc_disc_component, 238
Environment Variables, 23
Error reporting in the API, 91
excluded_phases
hwloc_disc_component, 238
hwloc_disc_status, 239
Exporting Topologies to Synthetic, 171
hwloc_topology_export_synthetic, 172

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_

172

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_|

172

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_|

172

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_VT,

172

hwloc_topology_export_synthetic_flags_e, 171
Exporting Topologies to XML, 168

hwloc_export_obj_userdata, 169
hwloc_export_obj_userdata_base64, 169
hwloc_free_xmlbuffer, 169
hwloc_topology_export_xml, 169
HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1,

168

hwloc_topology_export_xml_flags_e, 168
hwloc_topology_export_xmlbuffer, 170
hwloc_topology_set_userdata_export_callback, 170
hwloc_topology_set_userdata_import_callback, 171

finalize
hwloc_component, 236

Finding 1/0O objects, 153
hwloc_bridge_covers_pcibus, 153
hwloc_get_next_bridge, 153
hwloc_get_next_osdev, 154
hwloc_get_next_pcidev, 154
hwloc_get_non_io_ancestor_obj, 154
hwloc_get_pcidev_by_busid, 154
hwloc_get_pcidev_by_busidstring, 155

Finding Objects covering at least CPU set, 141
hwloc_get_child_covering_cpuset, 141
hwloc_get_next_obj_covering_cpuset_by_depth, 142
hwloc_get_next_obj_covering_cpuset_by_type, 142
hwloc_get_obj_covering_cpuset, 142

Finding Objects inside a CPU set, 138
hwloc_get_first_largest_obj_inside_cpuset, 138
hwloc_get_largest_objs_inside_cpuset, 138
hwloc_get_nbobjs_inside_cpuset_by_depth, 138
hwloc_get_nbobjs_inside_cpuset_by_type, 139
hwloc_get_next_obj_inside_cpuset_by_depth, 139
hwloc_get_next_obj_inside_cpuset_by_type, 139
hwloc_get_obj_index_inside_cpuset, 140
hwloc_get_obj_inside_cpuset_by depth, 140
hwloc_get_obj_inside_cpuset_by_type, 141

Finding objects, miscellaneous helpers, 146
hwloc_bitmap_singlify_per_core, 146
hwloc_get_closest_objs, 146
hwloc_get_numanode_obj_by_os_index, 147
hwloc_get_obj_below_array_by_type, 147
hwloc_get_obj_below_by_type, 147
hwloc_get_obj_with_same_locality, 148
hwloc_get_pu_obj_by_os_index, 148

@St afRitld MEMORY,
hwloc_obj, 246

NGtHATGR $embind
hwloc_topology_membind_support, 260

NaysEXTENDED_TYPES,

hwloc_backend, 231

hwloc_component, 237

hwloc_disc_status, 239

Frequently Asked Questions (FAQ), 67

func
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251

function
hwloc_cl_device_topology_amd, 235

generic
hwloc_topology_diff_obj_attr_u, 256
hwloc_topology_diff_u, 258

Generated by Doxygen

266

INDEX

get_area_membind
hwloc_topology_membind_support, 260
get_area_memlocation
hwloc_topology_membind_support, 260
get_pci_busid_cpuset
hwloc_backend, 232
get_proc_cpubind
hwloc_topology_cpubind_support, 252
get_proc_last_cpu_location
hwloc_topology_cpubind_support, 252
get_proc_membind
hwloc_topology_membind_support, 260
get_thisproc_cpubind
hwloc_topology_cpubind_support, 252
get_thisproc_last_cpu_location
hwloc_topology_cpubind_support, 252
get_thisproc_membind
hwloc_topology_membind_support, 260
get_thisthread_cpubind
hwloc_topology_cpubind_support, 253
get_thisthread last_cpu_location
hwloc_topology_cpubind_support, 253
get_thisthread_membind
hwloc_topology__membind_support, 260
get_thread_cpubind
hwloc_topology_cpubind_support, 253
gp_index
hwloc_obj, 246
group
hwloc_obj_attr_u, 249

Hardware Locality, 1
Helpers for consulting distance matrices, 177

hwloc_distances_obj_index, 177

hwloc_distances_obj_pair_values, 177
Heterogeneous Memory, 47
hwloc__insert_object_by_cpuset

Components and Plugins: Core functions to be used

by components, 224

hwloc_alloc

Memory binding, 116
hwloc_alloc_membind

Memory binding, 116
hwloc_alloc_membind_policy

Memory binding, 116
hwloc_alloc_setup_object

Components and Plugins: Core functions to be used

by components, 224

HWLOC_ALLOW_FLAG_ALL

Modifying a loaded Topology, 132
HWLOC_ALLOW_FLAG_CUSTOM

Modifying a loaded Topology, 132
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS

Modifying a loaded Topology, 132

hwloc_allow_flags_e

Modifying a loaded Topology, 132
HWLOC_API_VERSION

API version, 91
hwloc_backend, 231

disable, 231

discover, 231

flags, 231

get_pci_busid_cpuset, 232

is_thissystem, 232

phases, 232

private_data, 232
hwloc_backend_alloc

Components and Plugins:

and backends, 221

hwloc_backend_distances_add_commit

Components and Plugins: distances, 229
hwloc_backend_distances_add_create

Components and Plugins: distances, 229
hwloc_backend_distances _add_handle t

Components and Plugins: distances, 229
hwloc_backend_distances_add_values

Components and Plugins: distances, 229
hwloc_backend_enable

Components and Plugins:

and backends, 222

hwloc_bitmap_allbut

The bitmap API, 157
hwloc_bitmap_alloc

The bitmap API, 157
hwloc_bitmap_alloc_full

The bitmap API, 158
hwloc_bitmap_and

The bitmap API, 158
hwloc_bitmap_andnot

The bitmap API, 158
hwloc_bitmap_asprintf

The bitmap API, 158
hwloc_bitmap_clr

The bitmap API, 158
hwloc_bitmap_clr_range

The bitmap API, 158
hwloc_bitmap_compare

The bitmap API, 159
hwloc_bitmap_compare_first

The bitmap API, 159
hwloc_bitmap_copy

The bitmap API, 159
hwloc_bitmap_dup

The bitmap API, 160
hwloc_bitmap_fill

The bitmap API, 160
hwloc_bitmap_first

The bitmap API, 160

Discovery components

Discovery components

Generated by Doxygen

INDEX 267

hwloc_bitmap_first_unset hwloc_bitmap_singlify

The bitmap API, 160 The bitmap API, 165
hwloc_bitmap_foreach_begin hwloc_bitmap_singlify_per_core

The bitmap API, 157 Finding objects, miscellaneous helpers, 146
hwloc_bitmap_foreach_end hwloc_bitmap_snprintf

The bitmap API, 157 The bitmap API, 165
hwloc_bitmap_free hwloc_bitmap_sscanf

The bitmap API, 160 The bitmap API, 166
hwloc_bitmap_from_ith_ulong hwloc_bitmap_t

The bitmap API, 160 The bitmap API, 157
hwloc_bitmap_from_ulong hwloc_bitmap_taskset_asprintf

The bitmap API, 160 The bitmap API, 166
hwloc_bitmap_from_ulongs hwloc_bitmap_taskset_snprintf

The bitmap API, 161 The bitmap API, 166
hwloc_bitmap_intersects hwloc_bitmap_taskset_sscanf

The bitmap API, 161 The bitmap API, 167
hwloc_bitmap_isequal hwloc_bitmap_to_ith_ulong

The bitmap API, 161 The bitmap API, 167
hwloc_bitmap_isfull hwloc_bitmap_to_ulong

The bitmap API, 161 The bitmap API, 167
hwloc_bitmap_isincluded hwloc_bitmap_to_ulongs

The bitmap API, 161 The bitmap API, 167
hwloc_bitmap_isset hwloc_bitmap_weight

The bitmap API, 162 The bitmap API, 167
hwloc_bitmap_iszero hwloc_bitmap_xor

The bitmap API, 162 The bitmap API, 167
hwloc_bitmap_last hwloc_bitmap_zero

The bitmap API, 162 The bitmap API, 168
hwloc_bitmap_last_unset hwloc_bridge_covers_pcibus

The bitmap API, 162 Finding 1/0O objects, 153
hwloc_bitmap_list_asprintf hwloc_cl_device_pci_bus_info_khr, 234

The bitmap API, 162
hwloc_bitmap_list_snprintf

The bitmap API, 163
hwloc_bitmap_list_sscanf

The bitmap API, 163

pci_bus, 235
pci_device, 235
pci_domain, 235
pci_function, 235

hwloc_cl_device_topology_amd, 235

hwloc_bitmap_next bus, 235
The bitmap API, 163 data, 235
hwloc_bitmap_next_unset device, 235
The bitmap API, 164 function, 235
hwloc_bitmap_not pcie, 236
The bitmap API, 164 raw, 236
hwloc_bitmap_nr_ulongs type, 236
The bitmap API, 164 unused, 236

hwloc_bitmap_only
The bitmap API, 164
hwloc_bitmap_or

hwloc_compare_types
Object Types, 97
hwloc_component, 236

The bitmap API, 164 abi, 236
hwloc_bitmap_set data, 236

The bitmap API, 165 finalize, 236
hwloc_bitmap_set_ith_ulong flags, 237

The bitmap API, 165 init, 237
hwloc_bitmap_set_range type, 237

The bitmap API, 165

HWLOC_COMPONENT _ABI

Generated by Doxygen

268

INDEX

API version, 91
HWLOC_COMPONENT_TYPE_DISC
Components and Plugins: Generic components, 222
hwloc_component_type_e
Components and Plugins: Generic components, 222
hwloc_component_type_t
Components and Plugins: Generic components, 222
HWLOC_COMPONENT_TYPE_XML
Components and Plugins: Generic components, 222
hwloc_const_bitmap_t
The bitmap API, 157
hwloc_const_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
92
hwloc_const_nodeset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
92
hwloc_cpubind_flags_t
CPU binding, 109
HWLOC_CPUBIND_NOMEMBIND
CPU binding, 109
HWLOC_CPUBIND_PROCESS
CPU binding, 109
HWLOC_CPUBIND_STRICT
CPU binding, 109
HWLOC_CPUBIND_THREAD
CPU binding, 109
hwloc_cpukinds_get_by_cpuset
Kinds of CPU cores, 192
hwloc_cpukinds_get_info
Kinds of CPU cores, 192
hwloc_cpukinds_get_nr
Kinds of CPU cores, 193
hwloc_cpukinds_register
Kinds of CPU cores, 193
hwloc_cpuset_from_glibc_sched_affinity
Interoperability with glibc sched affinity, 200
hwloc_cpuset_from_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 198
hwloc_cpuset_from_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 196
hwloc_cpuset_from_nodeset
Converting between CPU sets and node sets, 152
hwloc_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
92
hwloc_cpuset_to_glibc_sched_affinity
Interoperability with glibc sched affinity, 200
hwloc_cpuset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 198
hwloc_cpuset_to_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 196

hwloc_cpuset_to_nodeset
Converting between CPU sets and node sets, 153
hwloc_cuda_get_device_cpuset
Interoperability with the CUDA Driver API, 203
hwloc_cuda_get_device_osdev
Interoperability with the CUDA Driver API, 203
hwloc_cuda_get_device_osdev_by index
Interoperability with the CUDA Driver API, 203
hwloc_cuda_get_device_pci_ids
Interoperability with the CUDA Driver API, 204
hwloc_cuda_get_device_pcidev
Interoperability with the CUDA Driver API, 204
hwloc_cudart_get_device_cpuset
Interoperability with the CUDA Runtime API, 205
hwloc_cudart_get_device_osdev_by_index
Interoperability with the CUDA Runtime API, 205
hwloc_cudart_get_device_pci_ids
Interoperability with the CUDA Runtime API, 205
hwloc_cudart_get_device_pcidev
Interoperability with the CUDA Runtime API, 206
hwloc_disc_component, 237
enabled_by_default, 238
excluded_phases, 238
instantiate, 238
name, 238
phases, 238
priority, 238
HWLOC_DISC_PHASE_ANNOTATE
Components and Plugins: Discovery
and backends, 221
HWLOC_DISC_PHASE_CPU
Components and Plugins:
and backends, 221
hwloc_disc_phase_e
Components and Plugins:
and backends, 221
HWLOC_DISC_PHASE_GLOBAL
Components and Plugins:
and backends, 221
HWLOC_DISC_PHASE_IO
Components and Plugins:
and backends, 221
HWLOC_DISC_PHASE_MEMORY
Components and Plugins: Discovery
and backends, 221
HWLOC_DISC_PHASE_MISC
Components and Plugins:
and backends, 221
HWLOC_DISC_PHASE_PCI
Components and Plugins:
and backends, 221
hwloc_disc_phase_t
Components and Plugins:
and backends, 221

components
Discovery components
Discovery components
Discovery components
Discovery components
components
Discovery components
Discovery

components

Discovery components

Generated by Doxygen

INDEX 269

HWLOC_DISC_PHASE_TWEAK Retrieve distances between objects, 176
Components and Plugins: Discovery components hwloc_distances_release_remove
and backends, 221 Remove distances between objects, 180
hwloc_disc_status, 238 hwloc_distances _remove
excluded_phases, 239 Remove distances between objects, 180
flags, 239 hwloc_distances_remove_by_depth
phase, 239 Remove distances between objects, 181
hwloc_disc_status_flag_e hwloc_distances_remove_by_type
Components and Plugins: Discovery components Remove distances between objects, 181
and backends, 221 hwloc_distances_s, 239
HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCESkind, 240
Components and Plugins: Discovery components nbobjs, 240
and backends, 221 objs, 240
hwloc_distances_add_commit values, 240
Add distances between objects, 179 hwloc_distances_transform
hwloc_distances_add_create Retrieve distances between objects, 176
Add distances between objects, 179 hwloc_distances_transform_e
hwloc_distances_add_flag_e Retrieve distances between objects, 174
Add distances between objects, 178 HWLOC_DISTANCES_TRANSFORM_LINKS
HWLOC_DISTANCES ADD_FLAG_GROUP Retrieve distances between objects, 174
Add distances between objects, 178 HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS
HWLOC_DISTANCES _ADD_FLAG_GROUP_INACCURATE Retrieve distances between objects, 174
Add distances between objects, 179 HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL
hwloc_distances_add_handle_t Retrieve distances between objects, 174
Add distances between objects, 178 HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURE
hwloc_distances_add_values Retrieve distances between objects, 174
Add distances between objects, 179 hwloc_distrib
hwloc_distances_get Distributing items over a topology, 149
Retrieve distances between objects, 175 HWLOC_DISTRIB_FLAG_REVERSE
hwloc_distances_get_by_depth Distributing items over a topology, 149
Retrieve distances between objects, 175 hwloc_distrib_flags_e
hwloc_distances_get_by name Distributing items over a topology, 149
Retrieve distances between objects, 175 hwloc_export_obj_userdata
hwloc_distances_get_by_type Exporting Topologies to XML, 169
Retrieve distances between objects, 176 hwloc_export_obj_userdata_base64
hwloc_distances_get_name Exporting Topologies to XML, 169
Retrieve distances between objects, 176 hwloc_filter_check_keep_object
hwloc_distances_kind_e Components and Plugins: Filtering objects, 225
Retrieve distances between objects, 173 hwloc_filter_check_keep_object_type
HWLOC_DISTANCES_KIND_FROM_OS Components and Plugins: Filtering objects, 225
Retrieve distances between objects, 173 hwloc_filter_check_osdev_subtype_important
HWLOC_DISTANCES_KIND_FROM_USER Components and Plugins: Filtering objects, 226
Retrieve distances between objects, 173 hwloc_filter_check_pcidev_subtype_important
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES Components and Plugins: Filtering objects, 226
Retrieve distances between objects, 174 hwloc_free
HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH Memory binding, 116
Retrieve distances between objects, 173 hwloc_free_xmlbuffer
HWLOC_DISTANCES_KIND_MEANS_LATENCY Exporting Topologies to XML, 169
Retrieve distances between objects, 173 hwloc_get_ancestor_obj_by_depth
hwloc_distances_obj_index Looking at Ancestor and Child Objects, 143
Helpers for consulting distance matrices, 177 hwloc_get_ancestor_obj_by_type
hwloc_distances_obj_pair_values Looking at Ancestor and Child Objects, 143
Helpers for consulting distance matrices, 177 hwloc_get_api_version
hwloc_distances_release API version, 92

Generated by Doxygen

270

INDEX

hwloc_get_area_membind

Memory binding, 117
hwloc_get_area_memlocation

Memory binding, 117
hwloc_get_cache_covering_cpuset

Looking at Cache Objects, 145
hwloc_get_cache_type_depth

Looking at Cache Objects, 145
hwloc_get_child_covering_cpuset

Finding Objects covering at least CPU set, 141
hwloc_get_closest_objs

Finding objects, miscellaneous helpers, 146
hwloc_get_common_ancestor_obj

Looking at Ancestor and Child Objects, 144
hwloc_get_cpubind

CPU binding, 110
hwloc_get_depth_type

Object levels, depths and types, 101
hwloc_get_first_largest_obj_inside_cpuset

Finding Objects inside a CPU set, 138
hwloc_get_largest_objs_inside_cpuset

Finding Objects inside a CPU set, 138
hwloc_get_last_cpu_location

CPU binding, 110
hwloc_get_local_numanode_objs

Comparing memory node attributes for finding where

to allocate on, 185

hwloc_get_membind

Memory binding, 118
hwloc_get_memory_parents_depth

Object levels, depths and types, 101
hwloc_get_nbobjs_by depth

Object levels, depths and types, 101
hwloc_get_nbobjs_by type

Object levels, depths and types, 102
hwloc_get_nbobjs_inside_cpuset_by depth

Finding Objects inside a CPU set, 138
hwloc_get_nbobjs_inside_cpuset_by_type

Finding Objects inside a CPU set, 139
hwloc_get_next_bridge

Finding 1/O objects, 153
hwloc_get_next_child

Looking at Ancestor and Child Objects, 144
hwloc_get_next_obj_by_depth

Object levels, depths and types, 102
hwloc_get_next_obj_by_type

Object levels, depths and types, 102
hwloc_get_next_obj_covering_cpuset_by_depth

Finding Objects covering at least CPU set, 142
hwloc_get_next_obj_covering_cpuset_by type

Finding Objects covering at least CPU set, 142
hwloc_get_next_obj_inside_cpuset_by_depth

Finding Objects inside a CPU set, 139
hwloc_get_next_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 139
hwloc_get_next_osdev

Finding 1/O objects, 154
hwloc_get_next_pcidev

Finding 1/0O objects, 154
hwloc_get_non_io_ancestor_obj

Finding 1/0O objects, 154
hwloc_get_numanode_obj_by_os_index

Finding objects, miscellaneous helpers, 147
hwloc_get_obj_below_array_by type

Finding objects, miscellaneous helpers, 147
hwloc_get_obj_below_by_type

Finding objects, miscellaneous helpers, 147
hwloc_get_obj_by_depth

Object levels, depths and types, 102
hwloc_get_obj_by_type

Object levels, depths and types, 103
hwloc_get_obj_covering_cpuset

Finding Objects covering at least CPU set, 142
hwloc_get_obj_index_inside_cpuset

Finding Objects inside a CPU set, 140
hwloc_get_obj_inside_cpuset_by_depth

Finding Objects inside a CPU set, 140
hwloc_get_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 141
hwloc_get_obj_with_same_locality

Finding objects, miscellaneous helpers, 148
hwloc_get_pcidev_by_busid

Finding 1/0O objects, 154
hwloc_get_pcidev_by_busidstring

Finding 1/0O objects, 155
hwloc_get_proc_cpubind

CPU binding, 110
hwloc_get_proc_last_cpu_location

CPU binding, 110
hwloc_get_proc_membind

Memory binding, 118
hwloc_get_pu_obj_by_os_index

Finding objects, miscellaneous helpers, 148
hwloc_get_root_obj

Object levels, depths and types, 103
hwloc_get_shared_cache_covering_obj

Looking at Cache Objects, 145
hwloc_get_thread_cpubind

CPU binding, 111
hwloc_get_type_depth

Object levels, depths and types, 103
hwloc_get_type_depth_e

Object levels, depths and types, 101
hwloc_get_type_or_above_depth

Object levels, depths and types, 104
hwloc_get_type_or_below_depth

Object levels, depths and types, 104
hwloc_gl_get_display_by_osdev

Generated by Doxygen

INDEX

271

Interoperability with OpenGL displays, 211
hwloc_gl_get_display_osdev_by name
Interoperability with OpenGL displays, 211
hwloc_gl_get_display_osdev_by_port_device
Interoperability with OpenGL displays, 212
hwloc_hide_errors
Components and Plugins: Core functions to be used
by components, 224
hwloc_ibv_get_device_cpuset
Interoperability with OpenFabrics, 213
hwloc_ibv_get_device_osdev
Interoperability with OpenFabrics, 213
hwloc_ibv_get_device_osdev_by_name
Interoperability with OpenFabrics, 213
hwloc_info_s, 241
name, 241
value, 241
hwloc_insert_object_by_parent
Components and Plugins: Core functions to be used
by components, 224
hwloc_levelzero_get_device_cpuset
Interoperability with the oneAPI Level Zero interface.,
209
hwloc_levelzero_get _device_osdev
Interoperability with the oneAPI Level Zero interface.,
209
hwloc_levelzero_get_sysman_device_cpuset
Interoperability with the oneAPI Level Zero interface.,
210
hwloc_levelzero_get_sysman_device_osdev
Interoperability with the oneAPI Level Zero interface.,
210
hwloc_linux_get_tid_cpubind
Linux-specific helpers, 194
hwloc_linux_get_tid_last_cpu_location
Linux-specific helpers, 194
hwloc_linux_read_path_as_cpumask
Linux-specific helpers, 195
hwloc_linux_set_tid_cpubind
Linux-specific helpers, 195
HWLOC_LOCAL_NUMANODE_FLAG_ALL
Comparing memory node attributes for finding where
to allocate on, 183
hwloc_local_numanode_flag_e
Comparing memory node attributes for finding where
to allocate on, 183

to allocate on, 183
hwloc_location, 241
location, 242
type, 242
hwloc_location::hwloc_location_u, 242
cpuset, 242
object, 242
HWLOC_LOCATION_TYPE_CPUSET
Comparing memory node attributes for finding where
to allocate on, 183
hwloc_location_type_e
Comparing memory node attributes for finding where
to allocate on, 183
HWLOC_LOCATION_TYPE_OBJECT
Comparing memory node attributes for finding where
to allocate on, 183
hwloc_memattr_flag_e
Managing memory attributes, 190
HWLOC_MEMATTR_FLAG_HIGHER_FIRST
Managing memory attributes, 190
HWLOC_MEMATTR_FLAG_LOWER_FIRST
Managing memory attributes, 190
HWLOC_MEMATTR_FLAG_NEED_INITIATOR
Managing memory attributes, 190
hwloc_memattr_get_best_initiator
Comparing memory node attributes for finding where
to allocate on, 185
hwloc_memattr_get_best_target
Comparing memory node attributes for finding where
to allocate on, 186
hwloc_memattr_get_by _name
Comparing memory node attributes for finding where
to allocate on, 186
hwloc_memattr_get_flags
Managing memory attributes, 190
hwloc_memattr_get_initiators
Comparing memory node attributes for finding where
to allocate on, 187
hwloc_memattr_get_name
Managing memory attributes, 190
hwloc_memattr_get_targets
Comparing memory node attributes for finding where
to allocate on, 187
hwloc_memattr_get_value
Comparing memory node attributes for finding where
to allocate on, 188

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT_LOCAHWLOC_MEMATTR_ID_BANDWIDTH

Comparing memory node attributes for finding where
to allocate on, 183

Comparing memory node attributes for finding where
to allocate on, 184

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITHWLOC_MEMATTR_ID_CAPACITY

Comparing memory node attributes for finding where
to allocate on, 183

Comparing memory node attributes for finding where
to allocate on, 184

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALIT¥vloc_memattr_id_e

Comparing memory node attributes for finding where

Comparing memory node attributes for finding where

Generated by Doxygen

272

INDEX

to allocate on, 183
HWLOC_MEMATTR_ID_LATENCY
Comparing memory node attributes for finding where
to allocate on, 184
HWLOC_MEMATTR_ID_LOCALITY
Comparing memory node attributes for finding where
to allocate on, 184
HWLOC_MEMATTR_ID_READ_BANDWIDTH
Comparing memory node attributes for finding where
to allocate on, 184
HWLOC_MEMATTR_ID_READ_LATENCY
Comparing memory node attributes for finding where
to allocate on, 185
hwloc_memattr_id t
Comparing memory node attributes for finding where
to allocate on, 182
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH
Comparing memory node attributes for finding where
to allocate on, 184
HWLOC_MEMATTR_ID_WRITE_LATENCY
Comparing memory node attributes for finding where
to allocate on, 185
hwloc_memattr_register
Managing memory attributes, 191
hwloc_memattr_set value
Managing memory attributes, 191
HWLOC_MEMBIND_BIND
Memory binding, 115
HWLOC_MEMBIND_BYNODESET
Memory binding, 114
HWLOC_MEMBIND_DEFAULT
Memory binding, 115
HWLOC_MEMBIND_FIRSTTOUCH
Memory binding, 115
hwloc_membind_flags_t
Memory binding, 114
HWLOC_MEMBIND_INTERLEAVE
Memory binding, 115
HWLOC_MEMBIND_MIGRATE
Memory binding, 114
HWLOC_MEMBIND_MIXED
Memory binding, 115
HWLOC_MEMBIND_NEXTTOUCH
Memory binding, 115
HWLOC_MEMBIND_NOCPUBIND
Memory binding, 114
hwloc_membind_policy_t
Memory binding, 114
HWLOC_MEMBIND_PROCESS
Memory binding, 114
HWLOC_MEMBIND_STRICT
Memory binding, 114
HWLOC_MEMBIND_THREAD
Memory binding, 114

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE
Memory binding, 115
hwloc_nodeset_from_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 198
hwloc_nodeset_from_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 196
hwloc_nodeset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
92
hwloc_nodeset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 198
hwloc_nodeset_to_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 197
hwloc_nvml_get_device_cpuset
Interoperability with the NVIDIA Management Library,
206
hwloc_nvml_get_device_osdev
Interoperability with the NVIDIA Management Library,
207
hwloc_nvml_get_device_osdev_by_index
Interoperability with the NVIDIA Management Library,
207
hwloc_obj, 244
arity, 245
attr, 245
children, 245
complete_cpuset, 245
complete_nodeset, 245
cpuset, 245
depth, 246
first_child, 246
gp_index, 246
infos, 246
infos_count, 246
io_arity, 246
io_first_child, 246
last_child, 246
logical_index, 247
memory_arity, 247
memory_first_child, 247
misc_arity, 247
misc_first_child, 247
name, 247
next_cousin, 247
next_sibling, 247
nodeset, 247
0s_index, 248
parent, 248
prev_cousin, 248
prev_sibling, 248
sibling_rank, 248
subtype, 248

Generated by Doxygen

INDEX

273

symmetric_subtree, 248

total_memory, 248

type, 249

userdata, 249
hwloc_obj_add_children_sets

Components and Plugins: Core functions to be used

by components, 225

hwloc_obj_add_info

Consulting and Adding Info Attributes, 107
hwloc_obj_add_other_obj_sets

Modifying a loaded Topology, 133
hwloc_obj_attr_snprintf

Converting between Object Types and Attributes, and

Strings, 105

hwloc_obj_attr_u, 249

bridge, 249

cache, 249

group, 249

numanode, 250

osdev, 250

pcidev, 250
hwloc_obj_attr_u::hwloc_bridge_attr_s, 232

depth, 233

domain, 233

downstream, 233

downstream_type, 233

pci, 233

secondary_bus, 233

subordinate_bus, 233

upstream, 233

upstream_type, 233
hwloc_obj_attr_u::hwloc_cache_attr_s, 234

associativity, 234

depth, 234

linesize, 234

size, 234

type, 234
hwloc_obj_attr_u::hwloc_group_attr_s, 240

depth, 240

dont_merge, 240

kind, 241

subkind, 241
hwloc_obj_attr_u::hwloc_numanode_attr_s, 243

local_memory, 243

page_types, 243

page_types_len, 243

class_id, 251

dev, 251

device_id, 251

domain, 251

func, 251

linkspeed, 251

revision, 251

subdevice_id, 251

subvendor _id, 251

vendor_id, 252
HWLOC_OBJ_BRIDGE

Object Types, 96
HWLOC_OBJ_BRIDGE_HOST

Object Types, 94
HWLOC_OBJ_BRIDGE_PCI

Object Types, 94
hwloc_obj_bridge_type_e

Object Types, 94
hwloc_obj_bridge_type_t

Object Types, 93
HWLOC_OBJ_CACHE_DATA

Object Types, 94
HWLOC_OBJ_CACHE_INSTRUCTION

Object Types, 94
hwloc_obj_cache_type_e

Object Types, 94
hwloc_obj_cache_type_t

Object Types, 93
HWLOC_OBJ_CACHE_UNIFIED

Object Types, 94
HWLOC_OBJ_CORE

Object Types, 95
HWLOC_OBJ_DIE

Object Types, 96
hwloc_obj_get_info_by name

Consulting and Adding Info Attributes, 107
HWLOC_OBJ_GROUP

Object Types, 95
hwloc_obj_is_in_subtree

Looking at Ancestor and Child Objects, 144
HWLOC_OBJ_L1CACHE

Object Types, 95
HWLOC_OBJ_L1ICACHE

Object Types, 95
HWLOC_OBJ_L2CACHE

Object Types, 95

hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_H&geO@p&OB,) L2ICACHE

242
count, 243
size, 243
hwloc_obj_attr_u::hwloc_osdev_attr_s, 250
type, 250
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 250
bus, 251

Object Types, 95
HWLOC_OBJ_L3CACHE
Object Types, 95
HWLOC_OBJ_L3ICACHE
Object Types, 95
HWLOC_OBJ_L4CACHE
Object Types, 95

Generated by Doxygen

274

INDEX

HWLOC_OBJ_L5CACHE

Object Types, 95
HWLOC_OBJ_MACHINE

Object Types, 95
HWLOC_OBJ_MEMCACHE

Object Types, 96
HWLOC_OBJ_MISC

Object Types, 96
HWLOC_OBJ_NUMANODE

Object Types, 96
HWLOC_OBJ_OS_DEVICE

Object Types, 96
HWLOC_OBJ_OSDEV_BLOCK

Object Types, 94
HWLOC_OBJ_OSDEV_COPROC

Object Types, 94
HWLOC_OBJ_OSDEV_DMA

Object Types, 94
HWLOC_OBJ_OSDEV_GPU

Object Types, 94
HWLOC_OBJ_OSDEV_NETWORK

Object Types, 94
HWLOC_OBJ_OSDEV_OPENFABRICS

Object Types, 94
hwloc_obj_osdev_type_e

Object Types, 94
hwloc_obj_osdev_type_t

Object Types, 94
HWLOC_OBJ_PACKAGE

Object Types, 95
HWLOC_OBJ_PCI_DEVICE

Object Types, 96
HWLOC_OBJ_PU

Object Types, 95
hwloc_obj_set_subtype

Consulting and Adding Info Attributes, 107
hwloc_obj_t

Object Structure and Attributes, 97
hwloc_obj_type_is_cache

Kinds of object Type, 136
hwloc_obj_type_is_dcache

Kinds of object Type, 137
hwloc_obj_type_is_icache

Kinds of object Type, 137
hwloc_obj_type_is_io

Kinds of object Type, 137
hwloc_obj_type_is_memory

Kinds of object Type, 137
hwloc_obj_type_is_normal

Kinds of object Type, 137
hwloc_obj_type_snprintf

Converting between Object Types and Attributes, and

Strings, 105

hwloc_obj_type_string

Converting between Object Types and Attributes, and
Strings, 105
hwloc_obj_type_t
Object Types, 95
hwloc_opencl_get_device_cpuset
Interoperability with OpenCL, 201
hwloc_opencl_get_device_osdev
Interoperability with OpenCL, 201
hwloc_opencl_get_device_osdev_by_index
Interoperability with OpenCL, 202
hwloc_opencl_get_device_pci_busid
Interoperability with OpenCL, 202
hwloc_pci_find_by_busid
Components and Plugins: finding PCI objects during
other discoveries, 228
hwloc_pci_find_parent_by_busid
Components and Plugins: finding PCI objects during
other discoveries, 228
hwloc_pcidisc_check_bridge_type
Components and Plugins: helpers for PCI discovery,
226
hwloc_pcidisc_find_bridge_buses
Components and Plugins: helpers for PCI discovery,
226
hwloc_pcidisc_find_cap
Components and Plugins: helpers for PCI discovery,
227
hwloc_pcidisc_find_linkspeed
Components and Plugins: helpers for PCI discovery,
227
hwloc_pcidisc_tree_attach
Components and Plugins: helpers for PCI discovery,
227
hwloc_pcidisc_tree_insert_by busid
Components and Plugins: helpers for PCI discovery,
227
hwloc_plugin_check_namespace
Components and Plugins: Generic components, 223
HWLOC_RESTRICT_FLAG_ADAPT_IO
Modifying a loaded Topology, 132
HWLOC_RESTRICT_FLAG_ADAPT_MISC
Modifying a loaded Topology, 132
HWLOC_RESTRICT_FLAG_BYNODESET
Modifying a loaded Topology, 132
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS
Modifying a loaded Topology, 132
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS
Modifying a loaded Topology, 132
hwloc_restrict_flags_e
Modifying a loaded Topology, 132
hwloc_rsmi_get_device_cpuset
Interoperability with the ROCm SMI Management Li-
brary, 208
hwloc_rsmi_get_device_osdev

Generated by Doxygen

INDEX

275

Interoperability with the ROCm SMI Management Li-
brary, 208
hwloc_rsmi_get_device_osdev_by_index
Interoperability with the ROCm SMI Management Li-
brary, 208
hwloc_set _area_membind
Memory binding, 119
hwloc_set_cpubind
CPU binding, 111
hwloc_set_membind
Memory binding, 119
hwloc_set_proc_cpubind
CPU binding, 111
hwloc_set_proc_membind
Memory binding, 119
hwloc_set_thread_cpubind
CPU binding, 112
hwloc_shmem_topology_adopt
Sharing topologies between processes, 218
hwloc_shmem_topology_get_length
Sharing topologies between processes, 219
hwloc_shmem_topology_write
Sharing topologies between processes, 219
HWLOC_SHOW_ALL_ERRORS
Components and Plugins: Core functions to be used
by components, 223
HWLOC_SHOW_CRITICAL_ERRORS
Components and Plugins: Core functions to be used
by components, 223
hwloc_topology_abi_check
Topology Creation and Destruction, 98
hwloc_topology_alloc_group_object
Modifying a loaded Topology, 133
hwloc_topology_allow
Modifying a loaded Topology, 133
hwloc_topology_check
Topology Creation and Destruction, 98

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST

Changing the Source of Topology Discovery, 121
hwloc_topology_components_flag_e
Changing the Source of Topology Discovery, 120
hwloc_topology_cpubind_support, 252
get_proc_cpubind, 252
get_proc_last_cpu_location, 252
get_thisproc_cpubind, 252
get_thisproc_last_cpu_location, 252
get_thisthread cpubind, 253
get_thisthread_last_cpu_location, 253
get_thread_cpubind, 253
set_proc_cpubind, 253
set_thisproc_cpubind, 253
set_thisthread_cpubind, 253
set_thread_cpubind, 253
hwloc_topology_destroy

Topology Creation and Destruction, 99
hwloc_topology_diff_apply

Topology differences, 216
hwloc_topology_diff_apply_flags_e

Topology differences, 215
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE

Topology differences, 215
hwloc_topology_diff_build

Topology differences, 216
hwloc_topology_diff_destroy

Topology differences, 216
hwloc_topology_diff_export_xml

Topology differences, 217
hwloc_topology_diff_export_xmlbuffer

Topology differences, 217
hwloc_topology_diff_load_xml

Topology differences, 217
hwloc_topology_diff_load_xmlbuffer

Topology differences, 218
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR

Topology differences, 215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO

Topology differences, 215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME

Topology differences, 215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

Topology differences, 215
hwloc_topology_diff_obj_attr_type_e

Topology differences, 215
hwloc_topology_diff_obj_attr_type_t

Topology differences, 214
hwloc_topology_diff_obj_attr_u, 256

generic, 256

string, 256

uint64, 256

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s,

254
type, 254

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

255
name, 255
newvalue, 255
oldvalue, 255
type, 255

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s,

256

index, 257

newvalue, 257

oldvalue, 257

type, 257
hwloc_topology_diff_t

Topology differences, 214
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX

Topology differences, 215

Generated by Doxygen

276 INDEX

hwloc_topology_diff_type_e HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING
Topology differences, 215 Topology Detection Configuration and Query, 127
hwloc_topology_diff type_t HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
Topology differences, 215 Topology Detection Configuration and Query, 126
hwloc_topology_diff_u, 258 HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED
generic, 258 Topology Detection Configuration and Query, 124
obj_attr, 258 HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM
too_complex, 258 Topology Detection Configuration and Query, 125
hwloc_topology_diff_u::hwloc_topology_diff _generic_s, HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS
253 Topology Detection Configuration and Query, 127
next, 254 HWLOC_TOPOLOGY_FLAG_NO_DISTANCES
type, 254 Topology Detection Configuration and Query, 127
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s, HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS
254 Topology Detection Configuration and Query, 127
diff, 254 HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING
next, 254 Topology Detection Configuration and Query, 126
obj_depth, 254 HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING
obj_index, 255 Topology Detection Configuration and Query, 127
type, 255 HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES
hwloc_topology_diff_u::hwloc_topology_diff too_complex_s, Topology Detection Configuration and Query, 125
257 hwloc_topology_flags_e
next, 257 Topology Detection Configuration and Query, 124
obj_depth, 257 hwloc_topology_free_group_object
obj_index, 257 Modifying a loaded Topology, 133
type, 257 hwloc_topology_get_allowed_cpuset
hwloc_topology_discovery_support, 258 CPU and node sets of entire topologies, 150
cpukind_efficiency, 259 hwloc_topology_get_allowed_nodeset
disallowed_numa, 259 CPU and node sets of entire topologies, 150
disallowed_pu, 259 hwloc_topology_get_complete_cpuset
numa, 259 CPU and node sets of entire topologies, 151
numa_memory, 259 hwloc_topology_get_complete_nodeset
pu, 259 CPU and node sets of entire topologies, 151
hwloc_topology_dup hwloc_topology_get_default_nodeset
Topology Creation and Destruction, 99 Comparing memory node attributes for finding where
hwloc_topology_export_synthetic to allocate on, 188
Exporting Topologies to Synthetic, 172 hwloc_topology_get_depth
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_KIBEDRYels, depths and types, 104
Exporting Topologies to Synthetic, 172 hwloc_topology_get_flags
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTR%opology Detection Configuration and Query, 128
Exporting Topologies to Synthetic, 172 hwloc_topology_get_support
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTERpPBEBgY YrREtion Configuration and Query, 128
Exporting Topologies to Synthetic, 172 hwloc_topology_get_topology_cpuset
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_VA1 CPU and node sets of entire topologies, 151
Exporting Topologies to Synthetic, 172 hwloc_topology_get_topology nodeset
hwloc_topology_export_synthetic_flags_e CPU and node sets of entire topologies, 152
Exporting Topologies to Synthetic, 171 hwloc_topology_get_type_filter
hwloc_topology_export_xml Topology Detection Configuration and Query, 129
Exporting Topologies to XML, 169 hwloc_topology_get_userdata
HWLOC_TOPOLOGY_EXPORT_XML_FLAG_VA1 Topology Detection Configuration and Query, 129
Exporting Topologies to XML, 168 hwloc_topology_init
hwloc_topology_export_xml_flags_e Topology Creation and Destruction, 99
Exporting Topologies to XML, 168 hwloc_topology_insert_group_object
hwloc_topology_export_xmlbuffer Modifying a loaded Topology, 134
Exporting Topologies to XML, 170 hwloc_topology_insert_misc_object

Generated by Doxygen

INDEX

277

Modifying a loaded Topology, 135
hwloc_topology_is_thissystem

Topology Detection Configuration and Query, 129
hwloc_topology_load

Topology Creation and Destruction, 99
hwloc_topology_membind_support, 259

alloc_membind, 260

bind_membind, 260

firsttouch_membind, 260

get_area_membind, 260

get_area_memlocation, 260

get_proc_membind, 260

get_thisproc_membind, 260

get_thisthread_membind, 260

interleave_membind, 260

migrate_membind, 260

nexttouch_membind, 261

set_area_membind, 261

set_proc_membind, 261

set_thisproc_membind, 261

set_thisthread_membind, 261

weighted_interleave_membind, 261
hwloc_topology_misc_support, 261

imported_support, 262
hwloc_topology_reconnect

Components and Plugins: Core functions to be used

by components, 225

hwloc_topology_refresh

Modifying a loaded Topology, 135
hwloc_topology_restrict

Modifying a loaded Topology, 135
hwloc_topology_set_all_types_filter

Topology Detection Configuration and Query, 129
hwloc_topology_set_cache_types_filter

Topology Detection Configuration and Query, 130
hwloc_topology_set_components

Changing the Source of Topology Discovery, 121
hwloc_topology_set_flags

Topology Detection Configuration and Query, 130
hwloc_topology_set_icache_types_filter

Topology Detection Configuration and Query, 130
hwloc_topology_set_io_types_filter

Topology Detection Configuration and Query, 130
hwloc_topology_set_pid

Changing the Source of Topology Discovery, 121
hwloc_topology_set_synthetic

Changing the Source of Topology Discovery, 121
hwloc_topology_set_type_filter

Topology Detection Configuration and Query, 131
hwloc_topology_set_userdata

Topology Detection Configuration and Query, 131
hwloc_topology_set userdata_export_callback

Exporting Topologies to XML, 170
hwloc_topology_set_userdata_import_callback

Exporting Topologies to XML, 171
hwloc_topology_set xml

Changing the Source of Topology Discovery, 122
hwloc_topology_set_xmlbuffer

Changing the Source of Topology Discovery, 122
hwloc_topology_support, 262

cpubind, 262

discovery, 262

membind, 262

misc, 262
hwloc_topology_t

Topology Creation and Destruction, 98
HWLOC_TYPE_DEPTH_BRIDGE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_MEMCACHE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_MISC

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_MULTIPLE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_NUMANODE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_OS_DEVICE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_PCI_DEVICE

Object levels, depths and types, 101
HWLOC_TYPE_DEPTH_UNKNOWN

Object levels, depths and types, 101
hwloc_type_filter_e

Topology Detection Configuration and Query, 127
HWLOC_TYPE_FILTER_KEEP_ALL

Topology Detection Configuration and Query, 128
HWLOC_TYPE_FILTER_KEEP_IMPORTANT

Topology Detection Configuration and Query, 128
HWLOC_TYPE_FILTER_KEEP_NONE

Topology Detection Configuration and Query, 128
HWLOC_TYPE_FILTER_KEEP_STRUCTURE

Topology Detection Configuration and Query, 128
hwloc_type_sscanf

Converting between Object Types and Attributes, and

Strings, 106

hwloc_type_sscanf_as_depth

Converting between Object Types and Attributes, and

Strings, 106

HWLOC_TYPE_UNORDERED

Object Types, 93
hwloc_windows_get_nr_processor_groups

Windows-specific helpers, 199
hwloc_windows_get_processor_group_cpuset

Windows-specific helpers, 199

I/O Devices, 29
imported_support
hwloc_topology_misc_support, 262

Generated by Doxygen

278

INDEX

Importing and exporting topologies from/to XML files, 51
index

Interoperability with the NVIDIA Management Library, 206
hwloc_nvml_get_device_cpuset, 206

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atthwiot64venl_get_device_osdev, 207

257

infos
hwloc_obj, 246

infos_count
hwloc_obj, 246

init
hwloc_component, 237

Installation, 11

instantiate
hwloc_disc_component, 238

interleave_membind
hwloc_topology_membind_support, 260

Interoperability with glibc sched affinity, 200
hwloc_cpuset_from_glibc_sched_affinity, 200
hwloc_cpuset_to_glibc_sched_affinity, 200

Interoperability with Linux libnuma bitmask, 197
hwloc_cpuset_from_linux_libnuma_bitmask, 198
hwloc_cpuset_to_linux_libnuma_bitmask, 198
hwloc_nodeset_from_linux_libnuma_bitmask, 198
hwloc_nodeset_to_linux_libnuma_bitmask, 198

Interoperability with Linux libnuma unsigned long masks,

195

hwloc_cpuset_from_linux_libnuma_ulongs, 196
hwloc_cpuset_to_linux_libnuma_ulongs, 196
hwloc_nodeset_from_linux_libnuma_ulongs, 196
hwloc_nodeset_to_linux_libnuma_ulongs, 197

Interoperability with OpenCL, 201
hwloc_opencl_get_device_cpuset, 201
hwloc_opencl_get_device_osdev, 201
hwloc_opencl_get_device_osdev_by_index, 202
hwloc_opencl_get_device_pci_busid, 202

Interoperability with OpenFabrics, 212
hwloc_ibv_get_device_cpuset, 213
hwloc_ibv_get_device_osdev, 213
hwloc_ibv_get_device_osdev_by name, 213

Interoperability with OpenGL displays, 211
hwloc_gl_get_display_by_osdev, 211
hwloc_gl_get_display_osdev_by name, 211
hwloc_gl_get_display_osdev_by_port_device, 212

Interoperability With Other Software, 55

Interoperability with the CUDA Driver API, 202
hwloc_cuda_get_device_cpuset, 203
hwloc_cuda_get_device_osdev, 203
hwloc_cuda_get_device_osdev_by_index, 203
hwloc_cuda_get_device_pci_ids, 204
hwloc_cuda_get_device_pcidev, 204

Interoperability with the CUDA Runtime API, 204
hwloc_cudart_get_device_cpuset, 205
hwloc_cudart_get_device_osdev_by_index, 205
hwloc_cudart_get_device_pci_ids, 205
hwloc_cudart_get_device_pcidev, 206

hwloc_nvml_get_device_osdev_by_index, 207
Interoperability with the oneAPI Level Zero interface., 209
hwloc_levelzero_get_device_cpuset, 209
hwloc_levelzero_get_device_osdev, 209
hwloc_levelzero_get_sysman_device_cpuset, 210
hwloc_levelzero_get_sysman_device_osdev, 210
Interoperability with the ROCm SMI Management Library,
207
hwloc_rsmi_get_device_cpuset, 208
hwloc_rsmi_get_device_osdev, 208
hwloc_rsmi_get_device_osdev_by_index, 208
io_arity
hwloc_obj, 246
io_first_child
hwloc_obj, 246
is_thissystem
hwloc_backend, 232

kind
hwloc_distances_s, 240
hwloc_obj_attr_u::hwloc_group_attr_s, 241

Kinds of CPU cores, 192
hwloc_cpukinds_get_by_ cpuset, 192
hwloc_cpukinds_get_info, 192
hwloc_cpukinds_get_nr, 193
hwloc_cpukinds_register, 193

Kinds of object Type, 136
hwloc_obj_type_is_cache, 136
hwloc_obj_type_is_dcache, 137
hwloc_obj_type_is_icache, 137
hwloc_obj_type_is_io, 137
hwloc_obj_type_is_memory, 137
hwloc_obj_type_is_normal, 137

last_child
hwloc_obj, 246
linesize
hwloc_obj_attr_u::hwloc_cache_atir_s, 234
linkspeed
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
Linux-specific helpers, 194
hwloc_linux_get_tid_cpubind, 194
hwloc_linux_get_tid_last_cpu_location, 194
hwloc_linux_read path_as_cpumask, 195
hwloc_linux_set_tid_cpubind, 195
local_memory
hwloc_obj_attr_u::hwloc_numanode_attr_s, 243
location
hwloc_location, 242
logical_index
hwloc_obj, 247
Looking at Ancestor and Child Objects, 143

Generated by Doxygen

INDEX

279

hwloc_get_ancestor_obj_by_depth, 143
hwloc_get_ancestor_obj_by_type, 143
hwloc_get_common_ancestor_obj, 144
hwloc_get_next_child, 144
hwloc_obj_is_in_subtree, 144

Looking at Cache Objects, 145
hwloc_get_cache_covering_cpuset, 145
hwloc_get_cache_type_depth, 145
hwloc_get_shared_cache_covering_obj, 145

Managing memory attributes, 189
hwloc_memattr_flag_e, 190
HWLOC_MEMATTR_FLAG_HIGHER_FIRST, 190
HWLOC_MEMATTR_FLAG_LOWER_FIRST, 190
HWLOC_MEMATTR_FLAG_NEED_INITIATOR, 190
hwloc_memattr_get_flags, 190
hwloc_memattr_get_name, 190
hwloc_memattr_register, 191
hwloc_memattr_set value, 191

membind
hwloc_topology_support, 262

Memory binding, 112
hwloc_alloc, 116
hwloc_alloc_membind, 116
hwloc_alloc_membind_policy, 116
hwloc_free, 116
hwloc_get_area_membind, 117
hwloc_get_area_memlocation, 117
hwloc_get_membind, 118
hwloc_get_proc_membind, 118
HWLOC_MEMBIND_BIND, 115
HWLOC_MEMBIND_BYNODESET, 114
HWLOC_MEMBIND_DEFAULT, 115
HWLOC_MEMBIND_FIRSTTOUCH, 115
hwloc_membind_flags_t, 114
HWLOC_MEMBIND_INTERLEAVE, 115
HWLOC_MEMBIND_MIGRATE, 114
HWLOC_MEMBIND_MIXED, 115
HWLOC_MEMBIND_NEXTTOUCH, 115
HWLOC_MEMBIND_NOCPUBIND, 114
hwloc_membind_policy_t, 114
HWLOC_MEMBIND_PROCESS, 114
HWLOC_MEMBIND_STRICT, 114
HWLOC_MEMBIND_THREAD, 114
HWLOC_MEMBIND_WEIGHTED_INTERLEAVE,

115
hwloc_set _area_membind, 119
hwloc_set_membind, 119
hwloc_set_proc_membind, 119
memory_arity
hwloc_obj, 247

memory_first_child
hwloc_obj, 247

migrate_membind

hwloc_topology_membind_support, 260
misc
hwloc_topology_support, 262
misc_arity
hwloc_obj, 247
misc_first_child
hwloc_obj, 247
Miscellaneous objects, 35
Modifying a loaded Topology, 131
HWLOC_ALLOW_FLAG_ALL, 132
HWLOC_ALLOW_FLAG_CUSTOM, 132
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS,
132
hwloc_allow_flags_e, 132
hwloc_obj_add_other_obj_sets, 133
HWLOC_RESTRICT_FLAG_ADAPT_IO, 132
HWLOC_RESTRICT_FLAG_ADAPT_MISC, 132
HWLOC_RESTRICT_FLAG_BYNODESET, 132
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS,
132
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS,
132
hwloc_restrict_flags_e, 132
hwloc_topology_alloc_group_object, 133
hwloc_topology_allow, 133
hwloc_topology_free_group_object, 133
hwloc_topology_insert_group_object, 134
hwloc_topology_insert_misc_object, 135
hwloc_topology_refresh, 135
hwloc_topology_restrict, 135

name
hwloc_disc_component, 238
hwloc_info_s, 241
hwloc_obj, 247
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,
255
nbobjs
hwloc_distances_s, 240
newvalue
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,
255
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff _obj_attr_uint64_s
257
next
hwloc_topology_diff_u::hwloc_topology_diff_generic_s,
254
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
254
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,
257
next_cousin
hwloc_obj, 247
next_sibling

Generated by Doxygen

280

INDEX

hwloc_obj, 247
nexttouch_membind
hwloc_topology_membind_support, 261
nodeset
hwloc_obj, 247
numa
hwloc_topology_discovery_support, 259
numa_memory
hwloc_topology_discovery_support, 259
numanode
hwloc_obj_attr_u, 250

obj_attr
hwloc_topology_diff_u, 258
obj_depth

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,

254

hwloc_nodeset_t, 92

Object Structure and Attributes, 97

hwloc_obj_t, 97

Object Types, 93

hwloc_compare_types, 97
HWLOC_OBJ_BRIDGE, 96
HWLOC_OBJ_BRIDGE_HOST, 94
HWLOC_OBJ_BRIDGE_PCI, 94
hwloc_obj_bridge_type_e, 94
hwloc_obj_bridge_type_t, 93
HWLOC_OBJ_CACHE_DATA, 94
HWLOC_OBJ_CACHE_INSTRUCTION, 94
hwloc_obj_cache_type_e, 94
hwloc_obj_cache_type_t, 93
HWLOC_OBJ_CACHE_UNIFIED, 94
HWLOC_OBJ_CORE, 95
HWLOC_OBJ_DIE, 96

hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,HWLOC OBJ GROUP, 95

257
obj_index

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,

255

HWLOC_OBJ_L1CACHE, 95
HWLOC_OBJ_L1ICACHE, 95
HWLOC_OBJ_L2CACHE, 95
HWLOC_OBJ_L2ICACHE, 95

hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,HWLOC OBJ_L3CACHE, 95

257

object
hwloc_location::hwloc_location_u, 242

Object attributes, 37

Object levels, depths and types, 100
hwloc_get_depth_type, 101
hwloc_get_memory_parents_depth, 101
hwloc_get_nbobjs_by_depth, 101
hwloc_get_nbobjs_by_type, 102
hwloc_get_next_obj_by_depth, 102
hwloc_get_next_obj_by_type, 102
hwloc_get_obj_by_depth, 102
hwloc_get_obj_by_type, 103
hwloc_get_root_obj, 103
hwloc_get_type_depth, 103
hwloc_get_type_depth_e, 101
hwloc_get_type_or_above_depth, 104
hwloc_get_type_or_below_depth, 104
hwloc_topology_get_depth, 104
HWLOC_TYPE_DEPTH_BRIDGE, 101
HWLOC_TYPE_DEPTH_MEMCACHE, 101
HWLOC_TYPE_DEPTH_MISC, 101
HWLOC_TYPE_DEPTH_MULTIPLE, 101
HWLOC_TYPE_DEPTH_NUMANODE, 101
HWLOC_TYPE_DEPTH_OS_DEVICE, 101
HWLOC_TYPE_DEPTH_PCI_DEVICE, 101
HWLOC_TYPE_DEPTH_UNKNOWN, 101

Object Sets (hwloc_cpuset_t and hwloc_nodeset_t), 92

hwloc_const_cpuset_t, 92
hwloc_const_nodeset_t, 92
hwloc_cpuset_t, 92

objs

HWLOC_OBJ_L3ICACHE, 95
HWLOC_OBJ_L4CACHE, 95
HWLOC_OBJ_L5CACHE, 95
HWLOC_OBJ_MACHINE, 95
HWLOC_OBJ_MEMCACHE, 96
HWLOC_OBJ_MISC, 96
HWLOC_OBJ_NUMANODE, 96
HWLOC_OBJ_OS_DEVICE, 96
HWLOC_OBJ_OSDEV_BLOCK, 94
HWLOC_OBJ_OSDEV_COPROC, 94
HWLOC_OBJ_OSDEV_DMA, 94
HWLOC_OBJ_OSDEV_GPU, 94
HWLOC_OBJ_OSDEV_NETWORK, 94
HWLOC_OBJ_OSDEV_OPENFABRICS, 94
hwloc_obj_osdev_type_e, 94
hwloc_obj_osdev_type_t, 94
HWLOC_OBJ_PACKAGE, 95
HWLOC_OBJ_PCI_DEVICE, 96
HWLOC_OBJ_PU, 95
hwloc_obj_type_t, 95
HWLOC_TYPE_UNORDERED, 93

hwloc_distances_s, 240

oldvalue

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

255

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr uint64_s

257

os_index

hwloc_obj, 248

osdev

Generated by Doxygen

INDEX 281

hwloc_obj_attr_u, 250 HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES,
174
page_types HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH,
hwloc_obj_attr_u::hwloc_numanode_attr_s, 243 173
page_types_len HWLOC_DISTANCES_KIND_MEANS_LATENCY,
hwloc_obj_attr_u::hwloc_numanode_attr_s, 243 173
parent hwloc_distances_release, 176
hwloc_obj, 248 hwloc_distances_transform, 176
pci hwloc_distances_transform_e, 174
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233 HWLOC DISTANCES TRANSFORM_LINKS, 174
pci_bus HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS,
hwloc_cl_device_pci_bus_info_khr, 235 174
pci_device HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL,
hwloc_cl_device_pci_bus_info_khr, 235 174
pci_domain HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURE,
hwloc_cl_device_pci_bus_info_khr, 235 174
pCi_fUnCtion revision
hwloc_cl_device_pci_bus_info_khr, 235 hwloc_obj_attr_u:hwloc_pcidev_attr_s, 251
pcidev
hwloc_obj_attr_u, 250 secondary_bus
pcie hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
hwloc_cl_device_topology_amd, 236 set_area_membind
phase hwloc_topology_membind_support, 261
hwloc_disc_status, 239 set_proc_cpubind
phases hwloc_topology_cpubind_support, 253
hwloc_backend, 232 set_proc_membind
hwloc_disc_component, 238 hwloc_topology_membind_support, 261
prev_cousin set_thisproc_cpubind
hwloc_obj, 248 hwloc_topology_cpubind_support, 253
prev_sibling set_thisproc_membind
hwloc_obj, 248 hwloc_topology_membind_support, 261
priority set_thisthread_cpubind
hwloc_disc_component, 238 hwloc_topology_cpubind_support, 253
private_data set_thisthread_membind
hwloc_backend, 232 hwloc_topology_membind_support, 261
pu set_thread_cpubind
hwloc_topology_discovery_support, 259 hwloc_topology_cpubind_support, 253
Sharing topologies between processes, 218
raw hwloc_shmem_topology_adopt, 218
hwloc_cl_device_topology_amd, 236 hwloc_shmem_topology_get_length, 219
Remove distances between objects, 180 hwloc_shmem_topology write, 219
hwloc_distances_release_remove, 180 sibling_rank
hwloc_distances_remove, 180 hwloc_obj, 248
hwloc_distances_remove_by_depth, 181 size
hwloc_distances_remove_by_type, 181 hwloc_obj_attr_u::hwloc_cache_attr_s, 234
Retrieve distances between objects, 172 hwloc_obj_attr_u:hwloc_numanode_attr_s::hwloc_memory_page_type
hwloc_distances_get, 175 243
hwloc_distances_get_by_depth, 175 string
hwloc_distances_get_by name, 175 hwloc_topology_diff_obj_attr_u, 256
hwloc_distances_get_by_type, 176 subdevice_id
hwloc_distances_get_name, 176 hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251
hwloc_distances_kind_e, 173 subkind
HWLOC_DISTANCES_KIND_FROM_QS, 173 hwloc_obj_attr_u::hwloc_group_attr_s, 241

HWLOC_DISTANCES_KIND_FROM_USER, 173 subordinate_bus

Generated by Doxygen

282

INDEX

hwloc_obj_attr_u::hwloc_bridge_attr_s, 233

subtype

hwloc_obj, 248

subvendor _id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 251

symmetric_subtree

hwloc_obj, 248

Synthetic topologies, 53

Terms and Definitions, 15
The bitmap API, 155

hwloc_bitmap_allbut, 157
hwloc_bitmap_alloc, 157
hwloc_bitmap_alloc_full, 158
hwloc_bitmap_and, 158
hwloc_bitmap_andnot, 158
hwloc_bitmap_asprintf, 158
hwloc_bitmap_clr, 158
hwloc_bitmap_clr_range, 158
hwloc_bitmap_compare, 159
hwloc_bitmap_compare_first, 159
hwloc_bitmap_copy, 159
hwloc_bitmap_dup, 160
hwloc_bitmap_fill, 160
hwloc_bitmap_first, 160
hwloc_bitmap_first_unset, 160
hwloc_bitmap_foreach_begin, 157
hwloc_bitmap_foreach_end, 157
hwloc_bitmap_free, 160
hwloc_bitmap_from_ith_ulong, 160
hwloc_bitmap_from_ulong, 160
hwloc_bitmap_from_ulongs, 161
hwloc_bitmap_intersects, 161
hwloc_bitmap_isequal, 161
hwloc_bitmap_isfull, 161
hwloc_bitmap_isincluded, 161
hwloc_bitmap_isset, 162
hwloc_bitmap_iszero, 162
hwloc_bitmap_last, 162
hwloc_bitmap_last_unset, 162
hwloc_bitmap_list_asprintf, 162
hwloc_bitmap_list_snprintf, 163
hwloc_bitmap_list_sscanf, 163
hwloc_bitmap_next, 163
hwloc_bitmap_next_unset, 164
hwloc_bitmap_not, 164
hwloc_bitmap_nr_ulongs, 164
hwloc_bitmap_only, 164
hwloc_bitmap_or, 164
hwloc_bitmap_set, 165
hwloc_bitmap_set_ith_ulong, 165
hwloc_bitmap_set_range, 165
hwloc_bitmap_singlify, 165
hwloc_bitmap_snprintf, 165

hwloc_bitmap_sscanf, 166
hwloc_bitmap_t, 157
hwloc_bitmap_taskset_asprintf, 166
hwloc_bitmap_taskset_snprintf, 166
hwloc_bitmap_taskset_sscanf, 167
hwloc_bitmap_to_ith_ulong, 167
hwloc_bitmap_to_ulong, 167
hwloc_bitmap_to_ulongs, 167
hwloc_bitmap_weight, 167
hwloc_bitmap_xor, 167
hwloc_bitmap_zero, 168
hwloc_const_bitmap_t, 157
Thread Safety, 57
too_complex
hwloc_topology_diff_u, 258
Topology Attributes: Distances, Memory Attributes and
CPU Kinds, 43
Topology Creation and Destruction, 97
hwloc_topology_abi_check, 98
hwloc_topology_check, 98
hwloc_topology_destroy, 99
hwloc_topology_dup, 99
hwloc_topology_init, 99
hwloc_topology_load, 99
hwloc_topology_t, 98
Topology Detection Configuration and Query, 123
HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING,
127
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT,
126
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED,
124
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM,
125
HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS, 127
HWLOC_TOPOLOGY_FLAG_NO_DISTANCES, 127
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS, 127
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING,
126
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING,
127
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_ RESOURCE
125
hwloc_topology_flags_e, 124
hwloc_topology_get_flags, 128
hwloc_topology_get_support, 128
hwloc_topology_get_type_filter, 129
hwloc_topology_get_userdata, 129
hwloc_topology_is_thissystem, 129
hwloc_topology_set_all_types_filter, 129
hwloc_topology_set cache_types_filter, 130
hwloc_topology_set_flags, 130
hwloc_topology_set_icache_types_filter, 130
hwloc_topology_set_io_types_filter, 130

Generated by Doxygen

INDEX

283

hwloc_topology_set_type_filter, 131
hwloc_topology_set_userdata, 131
hwloc_type_filter_e, 127
HWLOC_TYPE_FILTER_KEEP_ALL, 128
HWLOC_TYPE_FILTER_KEEP_IMPORTANT, 128
HWLOC_TYPE_FILTER_KEEP_NONE, 128
HWLOC_TYPE_FILTER_KEEP_STRUCTURE, 128

Topology differences, 214

hwloc_topology_diff_apply, 216
hwloc_topology_diff_apply_flags_e, 215
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE,
215
hwloc_topology_diff_build, 216
hwloc_topology_diff_destroy, 216
hwloc_topology_diff_export_xml, 217
hwloc_topology_diff_export_xmlbuffer, 217
hwloc_topology_diff_load_xml, 217
hwloc_topology_diff_load_xmlbuffer, 218
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, 215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO, 215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME,
215
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE, 215
hwloc_topology_diff_obj_attr_type_e, 215
hwloc_topology_diff_obj_attr_type_t, 214
hwloc_topology_diff_t, 214
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX, 215
hwloc_topology_diff type_e, 215
hwloc_topology_diff type_t, 215

total_memory

type

hwloc_obj, 248

hwloc_cl_device_topology_amd, 236
hwloc_component, 237

hwloc_location, 242

hwloc_obj, 249
hwloc_obj_attr_u::hwloc_cache_attr_s, 234
hwloc_obj_attr_u::hwloc_osdev_attr_s, 250

hwloc_cl_device_topology_amd, 236
Upgrading to the hwloc 2.0 API, 81
upstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
upstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 233
userdata
hwloc_obj, 249

value
hwloc_info_s, 241

values
hwloc_distances_s, 240

vendor _id
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 252

weighted_interleave_membind
hwloc_topology_membind_support, 261

Windows-specific helpers, 199
hwloc_windows_get_nr_processor_groups, 199
hwloc_windows_get_processor_group_cpuset, 199

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s,

254

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

255

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s,

257
hwloc_topology_diff_u::hwloc_topology_diff_generic_s,
254
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
255

hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,

257

uint64

hwloc_topology_diff_obj_attr_u, 256

unused

Generated by Doxygen

	1 Hardware Locality
	1.1 Table of Contents
	1.2 hwloc Overview
	1.3 Command-line Examples
	1.4 Programming Interface
	1.4.1 Portability
	1.4.2 API Example

	1.5 Questions and Bugs
	1.6 History / Credits

	2 Installation
	2.1 Basic Installation
	2.2 Optional Dependencies
	2.3 Installing from a Git clone

	3 Compiling software on top of hwloc's C API
	3.1 Compiling on top of hwloc's C API with GNU Make
	3.2 Compiling on top of hwloc's C API with CMake

	4 Terms and Definitions
	4.1 Objects
	4.2 Indexes and Sets
	4.3 Hierarchy, Tree and Levels

	5 Command-Line Tools
	5.1 lstopo and lstopo-no-graphics
	5.2 hwloc-bind
	5.3 hwloc-calc
	5.4 hwloc-info
	5.5 hwloc-distrib
	5.6 hwloc-ps
	5.7 hwloc-annotate
	5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir
	5.9 hwloc-dump-hwdata
	5.10 hwloc-gather-topology and hwloc-gather-cpuid

	6 Environment Variables
	7 CPU and Memory Binding Overview
	7.1 Binding Policies and Portability
	7.2 Joint CPU and Memory Binding (or not)
	7.3 Current Memory Binding Policy

	8 I/O Devices
	8.1 Enabling and requirements
	8.2 I/O objects
	8.3 OS devices
	8.4 PCI devices and bridges
	8.5 Consulting I/O devices and binding
	8.6 Examples

	9 Miscellaneous objects
	9.1 Misc objects added by hwloc
	9.2 Annotating topologies with Misc objects

	10 Object attributes
	10.1 Normal attributes
	10.2 Custom string infos
	10.2.1 Hardware Platform Information
	10.2.2 Operating System Information
	10.2.3 hwloc Information
	10.2.4 CPU Information
	10.2.5 OS Device Information
	10.2.6 Other Object-specific Information
	10.2.7 User-Given Information

	11 Topology Attributes: Distances, Memory Attributes and CPU Kinds
	11.1 Distances
	11.2 Memory Attributes
	11.3 CPU Kinds

	12 Heterogeneous Memory
	12.1 Memory Tiers and Default nodes
	12.2 Using Heterogeneous Memory from the command-line
	12.3 Using Heterogeneous Memory from the C API
	12.3.1 Iterating over the list of (heterogeneous) NUMA nodes
	12.3.2 Iterating over local (heterogeneous) NUMA nodes

	13 Importing and exporting topologies from/to XML files
	13.1 libxml2 and minimalistic XML backends
	13.2 XML import error management

	14 Synthetic topologies
	14.1 Synthetic description string
	14.2 Loading a synthetic topology
	14.3 Exporting a topology as a synthetic string

	15 Interoperability With Other Software
	16 Thread Safety
	17 Components and plugins
	17.1 Components enabled by default
	17.2 Selecting which components to use
	17.3 Loading components from plugins
	17.4 Existing components and plugins

	18 Embedding hwloc in Other Software
	18.1 Using hwloc's M4 Embedding Capabilities
	18.2 Example Embedding hwloc

	19 Frequently Asked Questions (FAQ)
	19.1 Concepts
	19.1.1 I only need binding, or the number of cores, why should I use hwloc ?
	19.1.2 What may I disable to make hwloc faster?
	19.1.3 Should I use logical or physical/OS indexes? and how?
	19.1.4 hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.?
	19.1.5 hwloc only has a one-dimensional view of the architecture, it ignores distances?
	19.1.6 What are these Group objects in my topology?
	19.1.7 What happens if my topology is asymmetric?
	19.1.8 What happens to my topology if I disable symmetric multithreading, hyper-threading, etc. in the system?
	19.1.9 How may I ignore symmetric multithreading, hyper-threading, etc. in hwloc?

	19.2 Advanced
	19.2.1 I do not want hwloc to rediscover my enormous machine topology every time I rerun a process
	19.2.2 How many topologies may I use in my program?
	19.2.3 How to avoid memory waste when manipulating multiple similar topologies?
	19.2.4 How do I annotate the topology with private notes?
	19.2.5 How do I create a custom heterogeneous and asymmetric topology?

	19.3 Caveats
	19.3.1 Why is lstopo slow?
	19.3.2 Does hwloc require privileged access?
	19.3.3 What should I do when hwloc reports "operating system" warnings?
	19.3.4 Why does Valgrind complain about hwloc memory leaks?

	19.4 Platform-specific
	19.4.1 How do I enable ROCm SMI and select which version to use?
	19.4.2 How do I enable CUDA and select which CUDA version to use?
	19.4.3 How do I find the local MCDRAM NUMA node on Intel Xeon Phi processor?
	19.4.4 Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?
	19.4.5 How do I build hwloc for BlueGene/Q?
	19.4.6 How do I build hwloc for Windows?
	19.4.7 How to get useful topology information on NetBSD?
	19.4.8 Why does binding fail on AIX?

	19.5 Compatibility between hwloc versions
	19.5.1 How do I handle API changes?
	19.5.2 What is the difference between API and library version numbers?
	19.5.3 How do I handle ABI breaks?
	19.5.4 Are XML topology files compatible between hwloc releases?
	19.5.5 Are synthetic strings compatible between hwloc releases?
	19.5.6 Is it possible to share a shared-memory topology between different hwloc releases?

	20 Upgrading to the hwloc 2.0 API
	20.1 New Organization of NUMA nodes and Memory
	20.1.1 Memory children
	20.1.2 Examples
	20.1.3 NUMA level and depth
	20.1.4 Finding Local NUMA nodes and looking at Children and Parents

	20.2 4 Kinds of Objects and Children
	20.2.1 I/O and Misc children
	20.2.2 Kinds of objects

	20.3 HWLOC_OBJ_CACHE replaced
	20.4 allowed_cpuset and allowed_nodeset only in the main topology
	20.5 Object depths are now signed int
	20.6 Memory attributes become NUMANode-specific
	20.7 Topology configuration changes
	20.8 XML changes
	20.9 Distances API totally rewritten
	20.10 Return values of functions
	20.11 Misc API changes
	20.12 API removals and deprecations

	21 Topic Index
	21.1 Topics

	22 Data Structure Index
	22.1 Data Structures

	23 Topic Documentation
	23.1 Error reporting in the API
	23.2 API version
	23.2.1 Detailed Description
	23.2.2 Macro Definition Documentation
	23.2.2.1 HWLOC_API_VERSION
	23.2.2.2 HWLOC_COMPONENT_ABI

	23.2.3 Function Documentation
	23.2.3.1 hwloc_get_api_version()

	23.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
	23.3.1 Detailed Description
	23.3.2 Typedef Documentation
	23.3.2.1 hwloc_const_cpuset_t
	23.3.2.2 hwloc_const_nodeset_t
	23.3.2.3 hwloc_cpuset_t
	23.3.2.4 hwloc_nodeset_t

	23.4 Object Types
	23.4.1 Detailed Description
	23.4.2 Macro Definition Documentation
	23.4.2.1 HWLOC_TYPE_UNORDERED

	23.4.3 Typedef Documentation
	23.4.3.1 hwloc_obj_bridge_type_t
	23.4.3.2 hwloc_obj_cache_type_t
	23.4.3.3 hwloc_obj_osdev_type_t

	23.4.4 Enumeration Type Documentation
	23.4.4.1 hwloc_obj_bridge_type_e
	23.4.4.2 hwloc_obj_cache_type_e
	23.4.4.3 hwloc_obj_osdev_type_e
	23.4.4.4 hwloc_obj_type_t

	23.4.5 Function Documentation
	23.4.5.1 hwloc_compare_types()

	23.5 Object Structure and Attributes
	23.5.1 Detailed Description
	23.5.2 Typedef Documentation
	23.5.2.1 hwloc_obj_t

	23.6 Topology Creation and Destruction
	23.6.1 Detailed Description
	23.6.2 Typedef Documentation
	23.6.2.1 hwloc_topology_t

	23.6.3 Function Documentation
	23.6.3.1 hwloc_topology_abi_check()
	23.6.3.2 hwloc_topology_check()
	23.6.3.3 hwloc_topology_destroy()
	23.6.3.4 hwloc_topology_dup()
	23.6.3.5 hwloc_topology_init()
	23.6.3.6 hwloc_topology_load()

	23.7 Object levels, depths and types
	23.7.1 Detailed Description
	23.7.2 Enumeration Type Documentation
	23.7.2.1 hwloc_get_type_depth_e

	23.7.3 Function Documentation
	23.7.3.1 hwloc_get_depth_type()
	23.7.3.2 hwloc_get_memory_parents_depth()
	23.7.3.3 hwloc_get_nbobjs_by_depth()
	23.7.3.4 hwloc_get_nbobjs_by_type()
	23.7.3.5 hwloc_get_next_obj_by_depth()
	23.7.3.6 hwloc_get_next_obj_by_type()
	23.7.3.7 hwloc_get_obj_by_depth()
	23.7.3.8 hwloc_get_obj_by_type()
	23.7.3.9 hwloc_get_root_obj()
	23.7.3.10 hwloc_get_type_depth()
	23.7.3.11 hwloc_get_type_or_above_depth()
	23.7.3.12 hwloc_get_type_or_below_depth()
	23.7.3.13 hwloc_topology_get_depth()

	23.8 Converting between Object Types and Attributes, and Strings
	23.8.1 Detailed Description
	23.8.2 Function Documentation
	23.8.2.1 hwloc_obj_attr_snprintf()
	23.8.2.2 hwloc_obj_type_snprintf()
	23.8.2.3 hwloc_obj_type_string()
	23.8.2.4 hwloc_type_sscanf()
	23.8.2.5 hwloc_type_sscanf_as_depth()

	23.9 Consulting and Adding Info Attributes
	23.9.1 Detailed Description
	23.9.2 Function Documentation
	23.9.2.1 hwloc_obj_add_info()
	23.9.2.2 hwloc_obj_get_info_by_name()
	23.9.2.3 hwloc_obj_set_subtype()

	23.10 CPU binding
	23.10.1 Detailed Description
	23.10.2 Enumeration Type Documentation
	23.10.2.1 hwloc_cpubind_flags_t

	23.10.3 Function Documentation
	23.10.3.1 hwloc_get_cpubind()
	23.10.3.2 hwloc_get_last_cpu_location()
	23.10.3.3 hwloc_get_proc_cpubind()
	23.10.3.4 hwloc_get_proc_last_cpu_location()
	23.10.3.5 hwloc_get_thread_cpubind()
	23.10.3.6 hwloc_set_cpubind()
	23.10.3.7 hwloc_set_proc_cpubind()
	23.10.3.8 hwloc_set_thread_cpubind()

	23.11 Memory binding
	23.11.1 Detailed Description
	23.11.2 Enumeration Type Documentation
	23.11.2.1 hwloc_membind_flags_t
	23.11.2.2 hwloc_membind_policy_t

	23.11.3 Function Documentation
	23.11.3.1 hwloc_alloc()
	23.11.3.2 hwloc_alloc_membind()
	23.11.3.3 hwloc_alloc_membind_policy()
	23.11.3.4 hwloc_free()
	23.11.3.5 hwloc_get_area_membind()
	23.11.3.6 hwloc_get_area_memlocation()
	23.11.3.7 hwloc_get_membind()
	23.11.3.8 hwloc_get_proc_membind()
	23.11.3.9 hwloc_set_area_membind()
	23.11.3.10 hwloc_set_membind()
	23.11.3.11 hwloc_set_proc_membind()

	23.12 Changing the Source of Topology Discovery
	23.12.1 Detailed Description
	23.12.2 Enumeration Type Documentation
	23.12.2.1 hwloc_topology_components_flag_e

	23.12.3 Function Documentation
	23.12.3.1 hwloc_topology_set_components()
	23.12.3.2 hwloc_topology_set_pid()
	23.12.3.3 hwloc_topology_set_synthetic()
	23.12.3.4 hwloc_topology_set_xml()
	23.12.3.5 hwloc_topology_set_xmlbuffer()

	23.13 Topology Detection Configuration and Query
	23.13.1 Detailed Description
	23.13.2 Enumeration Type Documentation
	23.13.2.1 hwloc_topology_flags_e
	23.13.2.2 hwloc_type_filter_e

	23.13.3 Function Documentation
	23.13.3.1 hwloc_topology_get_flags()
	23.13.3.2 hwloc_topology_get_support()
	23.13.3.3 hwloc_topology_get_type_filter()
	23.13.3.4 hwloc_topology_get_userdata()
	23.13.3.5 hwloc_topology_is_thissystem()
	23.13.3.6 hwloc_topology_set_all_types_filter()
	23.13.3.7 hwloc_topology_set_cache_types_filter()
	23.13.3.8 hwloc_topology_set_flags()
	23.13.3.9 hwloc_topology_set_icache_types_filter()
	23.13.3.10 hwloc_topology_set_io_types_filter()
	23.13.3.11 hwloc_topology_set_type_filter()
	23.13.3.12 hwloc_topology_set_userdata()

	23.14 Modifying a loaded Topology
	23.14.1 Detailed Description
	23.14.2 Enumeration Type Documentation
	23.14.2.1 hwloc_allow_flags_e
	23.14.2.2 hwloc_restrict_flags_e

	23.14.3 Function Documentation
	23.14.3.1 hwloc_obj_add_other_obj_sets()
	23.14.3.2 hwloc_topology_alloc_group_object()
	23.14.3.3 hwloc_topology_allow()
	23.14.3.4 hwloc_topology_free_group_object()
	23.14.3.5 hwloc_topology_insert_group_object()
	23.14.3.6 hwloc_topology_insert_misc_object()
	23.14.3.7 hwloc_topology_refresh()
	23.14.3.8 hwloc_topology_restrict()

	23.15 Kinds of object Type
	23.15.1 Detailed Description
	23.15.2 Function Documentation
	23.15.2.1 hwloc_obj_type_is_cache()
	23.15.2.2 hwloc_obj_type_is_dcache()
	23.15.2.3 hwloc_obj_type_is_icache()
	23.15.2.4 hwloc_obj_type_is_io()
	23.15.2.5 hwloc_obj_type_is_memory()
	23.15.2.6 hwloc_obj_type_is_normal()

	23.16 Finding Objects inside a CPU set
	23.16.1 Detailed Description
	23.16.2 Function Documentation
	23.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()
	23.16.2.2 hwloc_get_largest_objs_inside_cpuset()
	23.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()
	23.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type()
	23.16.2.5 hwloc_get_next_obj_inside_cpuset_by_depth()
	23.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type()
	23.16.2.7 hwloc_get_obj_index_inside_cpuset()
	23.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()
	23.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

	23.17 Finding Objects covering at least CPU set
	23.17.1 Detailed Description
	23.17.2 Function Documentation
	23.17.2.1 hwloc_get_child_covering_cpuset()
	23.17.2.2 hwloc_get_next_obj_covering_cpuset_by_depth()
	23.17.2.3 hwloc_get_next_obj_covering_cpuset_by_type()
	23.17.2.4 hwloc_get_obj_covering_cpuset()

	23.18 Looking at Ancestor and Child Objects
	23.18.1 Detailed Description
	23.18.2 Function Documentation
	23.18.2.1 hwloc_get_ancestor_obj_by_depth()
	23.18.2.2 hwloc_get_ancestor_obj_by_type()
	23.18.2.3 hwloc_get_common_ancestor_obj()
	23.18.2.4 hwloc_get_next_child()
	23.18.2.5 hwloc_obj_is_in_subtree()

	23.19 Looking at Cache Objects
	23.19.1 Detailed Description
	23.19.2 Function Documentation
	23.19.2.1 hwloc_get_cache_covering_cpuset()
	23.19.2.2 hwloc_get_cache_type_depth()
	23.19.2.3 hwloc_get_shared_cache_covering_obj()

	23.20 Finding objects, miscellaneous helpers
	23.20.1 Detailed Description
	23.20.2 Function Documentation
	23.20.2.1 hwloc_bitmap_singlify_per_core()
	23.20.2.2 hwloc_get_closest_objs()
	23.20.2.3 hwloc_get_numanode_obj_by_os_index()
	23.20.2.4 hwloc_get_obj_below_array_by_type()
	23.20.2.5 hwloc_get_obj_below_by_type()
	23.20.2.6 hwloc_get_obj_with_same_locality()
	23.20.2.7 hwloc_get_pu_obj_by_os_index()

	23.21 Distributing items over a topology
	23.21.1 Detailed Description
	23.21.2 Enumeration Type Documentation
	23.21.2.1 hwloc_distrib_flags_e

	23.21.3 Function Documentation
	23.21.3.1 hwloc_distrib()

	23.22 CPU and node sets of entire topologies
	23.22.1 Detailed Description
	23.22.2 Function Documentation
	23.22.2.1 hwloc_topology_get_allowed_cpuset()
	23.22.2.2 hwloc_topology_get_allowed_nodeset()
	23.22.2.3 hwloc_topology_get_complete_cpuset()
	23.22.2.4 hwloc_topology_get_complete_nodeset()
	23.22.2.5 hwloc_topology_get_topology_cpuset()
	23.22.2.6 hwloc_topology_get_topology_nodeset()

	23.23 Converting between CPU sets and node sets
	23.23.1 Detailed Description
	23.23.2 Function Documentation
	23.23.2.1 hwloc_cpuset_from_nodeset()
	23.23.2.2 hwloc_cpuset_to_nodeset()

	23.24 Finding I/O objects
	23.24.1 Detailed Description
	23.24.2 Function Documentation
	23.24.2.1 hwloc_bridge_covers_pcibus()
	23.24.2.2 hwloc_get_next_bridge()
	23.24.2.3 hwloc_get_next_osdev()
	23.24.2.4 hwloc_get_next_pcidev()
	23.24.2.5 hwloc_get_non_io_ancestor_obj()
	23.24.2.6 hwloc_get_pcidev_by_busid()
	23.24.2.7 hwloc_get_pcidev_by_busidstring()

	23.25 The bitmap API
	23.25.1 Detailed Description
	23.25.2 Macro Definition Documentation
	23.25.2.1 hwloc_bitmap_foreach_begin
	23.25.2.2 hwloc_bitmap_foreach_end

	23.25.3 Typedef Documentation
	23.25.3.1 hwloc_bitmap_t
	23.25.3.2 hwloc_const_bitmap_t

	23.25.4 Function Documentation
	23.25.4.1 hwloc_bitmap_allbut()
	23.25.4.2 hwloc_bitmap_alloc()
	23.25.4.3 hwloc_bitmap_alloc_full()
	23.25.4.4 hwloc_bitmap_and()
	23.25.4.5 hwloc_bitmap_andnot()
	23.25.4.6 hwloc_bitmap_asprintf()
	23.25.4.7 hwloc_bitmap_clr()
	23.25.4.8 hwloc_bitmap_clr_range()
	23.25.4.9 hwloc_bitmap_compare()
	23.25.4.10 hwloc_bitmap_compare_first()
	23.25.4.11 hwloc_bitmap_copy()
	23.25.4.12 hwloc_bitmap_dup()
	23.25.4.13 hwloc_bitmap_fill()
	23.25.4.14 hwloc_bitmap_first()
	23.25.4.15 hwloc_bitmap_first_unset()
	23.25.4.16 hwloc_bitmap_free()
	23.25.4.17 hwloc_bitmap_from_ith_ulong()
	23.25.4.18 hwloc_bitmap_from_ulong()
	23.25.4.19 hwloc_bitmap_from_ulongs()
	23.25.4.20 hwloc_bitmap_intersects()
	23.25.4.21 hwloc_bitmap_isequal()
	23.25.4.22 hwloc_bitmap_isfull()
	23.25.4.23 hwloc_bitmap_isincluded()
	23.25.4.24 hwloc_bitmap_isset()
	23.25.4.25 hwloc_bitmap_iszero()
	23.25.4.26 hwloc_bitmap_last()
	23.25.4.27 hwloc_bitmap_last_unset()
	23.25.4.28 hwloc_bitmap_list_asprintf()
	23.25.4.29 hwloc_bitmap_list_snprintf()
	23.25.4.30 hwloc_bitmap_list_sscanf()
	23.25.4.31 hwloc_bitmap_next()
	23.25.4.32 hwloc_bitmap_next_unset()
	23.25.4.33 hwloc_bitmap_not()
	23.25.4.34 hwloc_bitmap_nr_ulongs()
	23.25.4.35 hwloc_bitmap_only()
	23.25.4.36 hwloc_bitmap_or()
	23.25.4.37 hwloc_bitmap_set()
	23.25.4.38 hwloc_bitmap_set_ith_ulong()
	23.25.4.39 hwloc_bitmap_set_range()
	23.25.4.40 hwloc_bitmap_singlify()
	23.25.4.41 hwloc_bitmap_snprintf()
	23.25.4.42 hwloc_bitmap_sscanf()
	23.25.4.43 hwloc_bitmap_taskset_asprintf()
	23.25.4.44 hwloc_bitmap_taskset_snprintf()
	23.25.4.45 hwloc_bitmap_taskset_sscanf()
	23.25.4.46 hwloc_bitmap_to_ith_ulong()
	23.25.4.47 hwloc_bitmap_to_ulong()
	23.25.4.48 hwloc_bitmap_to_ulongs()
	23.25.4.49 hwloc_bitmap_weight()
	23.25.4.50 hwloc_bitmap_xor()
	23.25.4.51 hwloc_bitmap_zero()

	23.26 Exporting Topologies to XML
	23.26.1 Detailed Description
	23.26.2 Enumeration Type Documentation
	23.26.2.1 hwloc_topology_export_xml_flags_e

	23.26.3 Function Documentation
	23.26.3.1 hwloc_export_obj_userdata()
	23.26.3.2 hwloc_export_obj_userdata_base64()
	23.26.3.3 hwloc_free_xmlbuffer()
	23.26.3.4 hwloc_topology_export_xml()
	23.26.3.5 hwloc_topology_export_xmlbuffer()
	23.26.3.6 hwloc_topology_set_userdata_export_callback()
	23.26.3.7 hwloc_topology_set_userdata_import_callback()

	23.27 Exporting Topologies to Synthetic
	23.27.1 Detailed Description
	23.27.2 Enumeration Type Documentation
	23.27.2.1 hwloc_topology_export_synthetic_flags_e

	23.27.3 Function Documentation
	23.27.3.1 hwloc_topology_export_synthetic()

	23.28 Retrieve distances between objects
	23.28.1 Detailed Description
	23.28.2 Enumeration Type Documentation
	23.28.2.1 hwloc_distances_kind_e
	23.28.2.2 hwloc_distances_transform_e

	23.28.3 Function Documentation
	23.28.3.1 hwloc_distances_get()
	23.28.3.2 hwloc_distances_get_by_depth()
	23.28.3.3 hwloc_distances_get_by_name()
	23.28.3.4 hwloc_distances_get_by_type()
	23.28.3.5 hwloc_distances_get_name()
	23.28.3.6 hwloc_distances_release()
	23.28.3.7 hwloc_distances_transform()

	23.29 Helpers for consulting distance matrices
	23.29.1 Detailed Description
	23.29.2 Function Documentation
	23.29.2.1 hwloc_distances_obj_index()
	23.29.2.2 hwloc_distances_obj_pair_values()

	23.30 Add distances between objects
	23.30.1 Detailed Description
	23.30.2 Typedef Documentation
	23.30.2.1 hwloc_distances_add_handle_t

	23.30.3 Enumeration Type Documentation
	23.30.3.1 hwloc_distances_add_flag_e

	23.30.4 Function Documentation
	23.30.4.1 hwloc_distances_add_commit()
	23.30.4.2 hwloc_distances_add_create()
	23.30.4.3 hwloc_distances_add_values()

	23.31 Remove distances between objects
	23.31.1 Detailed Description
	23.31.2 Function Documentation
	23.31.2.1 hwloc_distances_release_remove()
	23.31.2.2 hwloc_distances_remove()
	23.31.2.3 hwloc_distances_remove_by_depth()
	23.31.2.4 hwloc_distances_remove_by_type()

	23.32 Comparing memory node attributes for finding where to allocate on
	23.32.1 Detailed Description
	23.32.2 Typedef Documentation
	23.32.2.1 hwloc_memattr_id_t

	23.32.3 Enumeration Type Documentation
	23.32.3.1 hwloc_local_numanode_flag_e
	23.32.3.2 hwloc_location_type_e
	23.32.3.3 hwloc_memattr_id_e

	23.32.4 Function Documentation
	23.32.4.1 hwloc_get_local_numanode_objs()
	23.32.4.2 hwloc_memattr_get_best_initiator()
	23.32.4.3 hwloc_memattr_get_best_target()
	23.32.4.4 hwloc_memattr_get_by_name()
	23.32.4.5 hwloc_memattr_get_initiators()
	23.32.4.6 hwloc_memattr_get_targets()
	23.32.4.7 hwloc_memattr_get_value()
	23.32.4.8 hwloc_topology_get_default_nodeset()

	23.33 Managing memory attributes
	23.33.1 Detailed Description
	23.33.2 Enumeration Type Documentation
	23.33.2.1 hwloc_memattr_flag_e

	23.33.3 Function Documentation
	23.33.3.1 hwloc_memattr_get_flags()
	23.33.3.2 hwloc_memattr_get_name()
	23.33.3.3 hwloc_memattr_register()
	23.33.3.4 hwloc_memattr_set_value()

	23.34 Kinds of CPU cores
	23.34.1 Detailed Description
	23.34.2 Function Documentation
	23.34.2.1 hwloc_cpukinds_get_by_cpuset()
	23.34.2.2 hwloc_cpukinds_get_info()
	23.34.2.3 hwloc_cpukinds_get_nr()
	23.34.2.4 hwloc_cpukinds_register()

	23.35 Linux-specific helpers
	23.35.1 Detailed Description
	23.35.2 Function Documentation
	23.35.2.1 hwloc_linux_get_tid_cpubind()
	23.35.2.2 hwloc_linux_get_tid_last_cpu_location()
	23.35.2.3 hwloc_linux_read_path_as_cpumask()
	23.35.2.4 hwloc_linux_set_tid_cpubind()

	23.36 Interoperability with Linux libnuma unsigned long masks
	23.36.1 Detailed Description
	23.36.2 Function Documentation
	23.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()
	23.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()
	23.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()
	23.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

	23.37 Interoperability with Linux libnuma bitmask
	23.37.1 Detailed Description
	23.37.2 Function Documentation
	23.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()
	23.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()
	23.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()
	23.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

	23.38 Windows-specific helpers
	23.38.1 Detailed Description
	23.38.2 Function Documentation
	23.38.2.1 hwloc_windows_get_nr_processor_groups()
	23.38.2.2 hwloc_windows_get_processor_group_cpuset()

	23.39 Interoperability with glibc sched affinity
	23.39.1 Detailed Description
	23.39.2 Function Documentation
	23.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()
	23.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

	23.40 Interoperability with OpenCL
	23.40.1 Detailed Description
	23.40.2 Function Documentation
	23.40.2.1 hwloc_opencl_get_device_cpuset()
	23.40.2.2 hwloc_opencl_get_device_osdev()
	23.40.2.3 hwloc_opencl_get_device_osdev_by_index()
	23.40.2.4 hwloc_opencl_get_device_pci_busid()

	23.41 Interoperability with the CUDA Driver API
	23.41.1 Detailed Description
	23.41.2 Function Documentation
	23.41.2.1 hwloc_cuda_get_device_cpuset()
	23.41.2.2 hwloc_cuda_get_device_osdev()
	23.41.2.3 hwloc_cuda_get_device_osdev_by_index()
	23.41.2.4 hwloc_cuda_get_device_pci_ids()
	23.41.2.5 hwloc_cuda_get_device_pcidev()

	23.42 Interoperability with the CUDA Runtime API
	23.42.1 Detailed Description
	23.42.2 Function Documentation
	23.42.2.1 hwloc_cudart_get_device_cpuset()
	23.42.2.2 hwloc_cudart_get_device_osdev_by_index()
	23.42.2.3 hwloc_cudart_get_device_pci_ids()
	23.42.2.4 hwloc_cudart_get_device_pcidev()

	23.43 Interoperability with the NVIDIA Management Library
	23.43.1 Detailed Description
	23.43.2 Function Documentation
	23.43.2.1 hwloc_nvml_get_device_cpuset()
	23.43.2.2 hwloc_nvml_get_device_osdev()
	23.43.2.3 hwloc_nvml_get_device_osdev_by_index()

	23.44 Interoperability with the ROCm SMI Management Library
	23.44.1 Detailed Description
	23.44.2 Function Documentation
	23.44.2.1 hwloc_rsmi_get_device_cpuset()
	23.44.2.2 hwloc_rsmi_get_device_osdev()
	23.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

	23.45 Interoperability with the oneAPI Level Zero interface.
	23.45.1 Detailed Description
	23.45.2 Function Documentation
	23.45.2.1 hwloc_levelzero_get_device_cpuset()
	23.45.2.2 hwloc_levelzero_get_device_osdev()
	23.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()
	23.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

	23.46 Interoperability with OpenGL displays
	23.46.1 Detailed Description
	23.46.2 Function Documentation
	23.46.2.1 hwloc_gl_get_display_by_osdev()
	23.46.2.2 hwloc_gl_get_display_osdev_by_name()
	23.46.2.3 hwloc_gl_get_display_osdev_by_port_device()

	23.47 Interoperability with OpenFabrics
	23.47.1 Detailed Description
	23.47.2 Function Documentation
	23.47.2.1 hwloc_ibv_get_device_cpuset()
	23.47.2.2 hwloc_ibv_get_device_osdev()
	23.47.2.3 hwloc_ibv_get_device_osdev_by_name()

	23.48 Topology differences
	23.48.1 Detailed Description
	23.48.2 Typedef Documentation
	23.48.2.1 hwloc_topology_diff_obj_attr_type_t
	23.48.2.2 hwloc_topology_diff_t
	23.48.2.3 hwloc_topology_diff_type_t

	23.48.3 Enumeration Type Documentation
	23.48.3.1 hwloc_topology_diff_apply_flags_e
	23.48.3.2 hwloc_topology_diff_obj_attr_type_e
	23.48.3.3 hwloc_topology_diff_type_e

	23.48.4 Function Documentation
	23.48.4.1 hwloc_topology_diff_apply()
	23.48.4.2 hwloc_topology_diff_build()
	23.48.4.3 hwloc_topology_diff_destroy()
	23.48.4.4 hwloc_topology_diff_export_xml()
	23.48.4.5 hwloc_topology_diff_export_xmlbuffer()
	23.48.4.6 hwloc_topology_diff_load_xml()
	23.48.4.7 hwloc_topology_diff_load_xmlbuffer()

	23.49 Sharing topologies between processes
	23.49.1 Detailed Description
	23.49.2 Function Documentation
	23.49.2.1 hwloc_shmem_topology_adopt()
	23.49.2.2 hwloc_shmem_topology_get_length()
	23.49.2.3 hwloc_shmem_topology_write()

	23.50 Components and Plugins: Discovery components and backends
	23.50.1 Detailed Description
	23.50.2 Typedef Documentation
	23.50.2.1 hwloc_disc_phase_t

	23.50.3 Enumeration Type Documentation
	23.50.3.1 hwloc_disc_phase_e
	23.50.3.2 hwloc_disc_status_flag_e

	23.50.4 Function Documentation
	23.50.4.1 hwloc_backend_alloc()
	23.50.4.2 hwloc_backend_enable()

	23.51 Components and Plugins: Generic components
	23.51.1 Detailed Description
	23.51.2 Typedef Documentation
	23.51.2.1 hwloc_component_type_t

	23.51.3 Enumeration Type Documentation
	23.51.3.1 hwloc_component_type_e

	23.51.4 Function Documentation
	23.51.4.1 hwloc_plugin_check_namespace()

	23.52 Components and Plugins: Core functions to be used by components
	23.52.1 Detailed Description
	23.52.2 Macro Definition Documentation
	23.52.2.1 HWLOC_SHOW_ALL_ERRORS
	23.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

	23.52.3 Function Documentation
	23.52.3.1 hwloc__insert_object_by_cpuset()
	23.52.3.2 hwloc_alloc_setup_object()
	23.52.3.3 hwloc_hide_errors()
	23.52.3.4 hwloc_insert_object_by_parent()
	23.52.3.5 hwloc_obj_add_children_sets()
	23.52.3.6 hwloc_topology_reconnect()

	23.53 Components and Plugins: Filtering objects
	23.53.1 Detailed Description
	23.53.2 Function Documentation
	23.53.2.1 hwloc_filter_check_keep_object()
	23.53.2.2 hwloc_filter_check_keep_object_type()
	23.53.2.3 hwloc_filter_check_osdev_subtype_important()
	23.53.2.4 hwloc_filter_check_pcidev_subtype_important()

	23.54 Components and Plugins: helpers for PCI discovery
	23.54.1 Detailed Description
	23.54.2 Function Documentation
	23.54.2.1 hwloc_pcidisc_check_bridge_type()
	23.54.2.2 hwloc_pcidisc_find_bridge_buses()
	23.54.2.3 hwloc_pcidisc_find_cap()
	23.54.2.4 hwloc_pcidisc_find_linkspeed()
	23.54.2.5 hwloc_pcidisc_tree_attach()
	23.54.2.6 hwloc_pcidisc_tree_insert_by_busid()

	23.55 Components and Plugins: finding PCI objects during other discoveries
	23.55.1 Detailed Description
	23.55.2 Function Documentation
	23.55.2.1 hwloc_pci_find_by_busid()
	23.55.2.2 hwloc_pci_find_parent_by_busid()

	23.56 Components and Plugins: distances
	23.56.1 Detailed Description
	23.56.2 Typedef Documentation
	23.56.2.1 hwloc_backend_distances_add_handle_t

	23.56.3 Function Documentation
	23.56.3.1 hwloc_backend_distances_add_commit()
	23.56.3.2 hwloc_backend_distances_add_create()
	23.56.3.3 hwloc_backend_distances_add_values()

	24 Data Structure Documentation
	24.1 hwloc_backend Struct Reference
	24.1.1 Detailed Description
	24.1.2 Field Documentation
	24.1.2.1 disable
	24.1.2.2 discover
	24.1.2.3 flags
	24.1.2.4 get_pci_busid_cpuset
	24.1.2.5 is_thissystem
	24.1.2.6 phases
	24.1.2.7 private_data

	24.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference
	24.2.1 Detailed Description
	24.2.2 Field Documentation
	24.2.2.1 depth
	24.2.2.2 domain
	24.2.2.3 [union]
	24.2.2.4 downstream_type
	24.2.2.5 pci [1/2]
	24.2.2.6 [struct] [2/2]
	24.2.2.7 secondary_bus
	24.2.2.8 subordinate_bus
	24.2.2.9 [union]
	24.2.2.10 upstream_type

	24.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference
	24.3.1 Detailed Description
	24.3.2 Field Documentation
	24.3.2.1 associativity
	24.3.2.2 depth
	24.3.2.3 linesize
	24.3.2.4 size
	24.3.2.5 type

	24.4 hwloc_cl_device_pci_bus_info_khr Struct Reference
	24.4.1 Field Documentation
	24.4.1.1 pci_bus
	24.4.1.2 pci_device
	24.4.1.3 pci_domain
	24.4.1.4 pci_function

	24.5 hwloc_cl_device_topology_amd Union Reference
	24.5.1 Field Documentation
	24.5.1.1 bus
	24.5.1.2 data
	24.5.1.3 device
	24.5.1.4 function
	24.5.1.5 [struct]
	24.5.1.6 [struct]
	24.5.1.7 type
	24.5.1.8 unused

	24.6 hwloc_component Struct Reference
	24.6.1 Detailed Description
	24.6.2 Field Documentation
	24.6.2.1 abi
	24.6.2.2 data
	24.6.2.3 finalize
	24.6.2.4 flags
	24.6.2.5 init
	24.6.2.6 type

	24.7 hwloc_disc_component Struct Reference
	24.7.1 Detailed Description
	24.7.2 Field Documentation
	24.7.2.1 enabled_by_default
	24.7.2.2 excluded_phases
	24.7.2.3 instantiate
	24.7.2.4 name
	24.7.2.5 phases
	24.7.2.6 priority

	24.8 hwloc_disc_status Struct Reference
	24.8.1 Detailed Description
	24.8.2 Field Documentation
	24.8.2.1 excluded_phases
	24.8.2.2 flags
	24.8.2.3 phase

	24.9 hwloc_distances_s Struct Reference
	24.9.1 Detailed Description
	24.9.2 Field Documentation
	24.9.2.1 kind
	24.9.2.2 nbobjs
	24.9.2.3 objs
	24.9.2.4 values

	24.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference
	24.10.1 Detailed Description
	24.10.2 Field Documentation
	24.10.2.1 depth
	24.10.2.2 dont_merge
	24.10.2.3 kind
	24.10.2.4 subkind

	24.11 hwloc_info_s Struct Reference
	24.11.1 Detailed Description
	24.11.2 Field Documentation
	24.11.2.1 name
	24.11.2.2 value

	24.12 hwloc_location Struct Reference
	24.12.1 Detailed Description
	24.12.2 Field Documentation
	24.12.2.1 location
	24.12.2.2 type

	24.13 hwloc_location::hwloc_location_u Union Reference
	24.13.1 Detailed Description
	24.13.2 Field Documentation
	24.13.2.1 cpuset
	24.13.2.2 object

	24.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference
	24.14.1 Detailed Description
	24.14.2 Field Documentation
	24.14.2.1 count
	24.14.2.2 size

	24.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference
	24.15.1 Detailed Description
	24.15.2 Field Documentation
	24.15.2.1 local_memory
	24.15.2.2 page_types
	24.15.2.3 page_types_len

	24.16 hwloc_obj Struct Reference
	24.16.1 Detailed Description
	24.16.2 Field Documentation
	24.16.2.1 arity
	24.16.2.2 attr
	24.16.2.3 children
	24.16.2.4 complete_cpuset
	24.16.2.5 complete_nodeset
	24.16.2.6 cpuset
	24.16.2.7 depth
	24.16.2.8 first_child
	24.16.2.9 gp_index
	24.16.2.10 infos
	24.16.2.11 infos_count
	24.16.2.12 io_arity
	24.16.2.13 io_first_child
	24.16.2.14 last_child
	24.16.2.15 logical_index
	24.16.2.16 memory_arity
	24.16.2.17 memory_first_child
	24.16.2.18 misc_arity
	24.16.2.19 misc_first_child
	24.16.2.20 name
	24.16.2.21 next_cousin
	24.16.2.22 next_sibling
	24.16.2.23 nodeset
	24.16.2.24 os_index
	24.16.2.25 parent
	24.16.2.26 prev_cousin
	24.16.2.27 prev_sibling
	24.16.2.28 sibling_rank
	24.16.2.29 subtype
	24.16.2.30 symmetric_subtree
	24.16.2.31 total_memory
	24.16.2.32 type
	24.16.2.33 userdata

	24.17 hwloc_obj_attr_u Union Reference
	24.17.1 Detailed Description
	24.17.2 Field Documentation
	24.17.2.1 bridge
	24.17.2.2 cache
	24.17.2.3 group
	24.17.2.4 numanode
	24.17.2.5 osdev
	24.17.2.6 pcidev

	24.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference
	24.18.1 Detailed Description
	24.18.2 Field Documentation
	24.18.2.1 type

	24.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference
	24.19.1 Detailed Description
	24.19.2 Field Documentation
	24.19.2.1 bus
	24.19.2.2 class_id
	24.19.2.3 dev
	24.19.2.4 device_id
	24.19.2.5 domain
	24.19.2.6 func
	24.19.2.7 linkspeed
	24.19.2.8 revision
	24.19.2.9 subdevice_id
	24.19.2.10 subvendor_id
	24.19.2.11 vendor_id

	24.20 hwloc_topology_cpubind_support Struct Reference
	24.20.1 Detailed Description
	24.20.2 Field Documentation
	24.20.2.1 get_proc_cpubind
	24.20.2.2 get_proc_last_cpu_location
	24.20.2.3 get_thisproc_cpubind
	24.20.2.4 get_thisproc_last_cpu_location
	24.20.2.5 get_thisthread_cpubind
	24.20.2.6 get_thisthread_last_cpu_location
	24.20.2.7 get_thread_cpubind
	24.20.2.8 set_proc_cpubind
	24.20.2.9 set_thisproc_cpubind
	24.20.2.10 set_thisthread_cpubind
	24.20.2.11 set_thread_cpubind

	24.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference
	24.21.1 Field Documentation
	24.21.1.1 next
	24.21.1.2 type

	24.22 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference
	24.22.1 Field Documentation
	24.22.1.1 type

	24.23 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference
	24.23.1 Field Documentation
	24.23.1.1 diff
	24.23.1.2 next
	24.23.1.3 obj_depth
	24.23.1.4 obj_index
	24.23.1.5 type

	24.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference
	24.24.1 Detailed Description
	24.24.2 Field Documentation
	24.24.2.1 name
	24.24.2.2 newvalue
	24.24.2.3 oldvalue
	24.24.2.4 type

	24.25 hwloc_topology_diff_obj_attr_u Union Reference
	24.25.1 Detailed Description
	24.25.2 Field Documentation
	24.25.2.1 generic
	24.25.2.2 string
	24.25.2.3 uint64

	24.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference
	24.26.1 Detailed Description
	24.26.2 Field Documentation
	24.26.2.1 index
	24.26.2.2 newvalue
	24.26.2.3 oldvalue
	24.26.2.4 type

	24.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference
	24.27.1 Field Documentation
	24.27.1.1 next
	24.27.1.2 obj_depth
	24.27.1.3 obj_index
	24.27.1.4 type

	24.28 hwloc_topology_diff_u Union Reference
	24.28.1 Detailed Description
	24.28.2 Field Documentation
	24.28.2.1 generic
	24.28.2.2 obj_attr
	24.28.2.3 too_complex

	24.29 hwloc_topology_discovery_support Struct Reference
	24.29.1 Detailed Description
	24.29.2 Field Documentation
	24.29.2.1 cpukind_efficiency
	24.29.2.2 disallowed_numa
	24.29.2.3 disallowed_pu
	24.29.2.4 numa
	24.29.2.5 numa_memory
	24.29.2.6 pu

	24.30 hwloc_topology_membind_support Struct Reference
	24.30.1 Detailed Description
	24.30.2 Field Documentation
	24.30.2.1 alloc_membind
	24.30.2.2 bind_membind
	24.30.2.3 firsttouch_membind
	24.30.2.4 get_area_membind
	24.30.2.5 get_area_memlocation
	24.30.2.6 get_proc_membind
	24.30.2.7 get_thisproc_membind
	24.30.2.8 get_thisthread_membind
	24.30.2.9 interleave_membind
	24.30.2.10 migrate_membind
	24.30.2.11 nexttouch_membind
	24.30.2.12 set_area_membind
	24.30.2.13 set_proc_membind
	24.30.2.14 set_thisproc_membind
	24.30.2.15 set_thisthread_membind
	24.30.2.16 weighted_interleave_membind

	24.31 hwloc_topology_misc_support Struct Reference
	24.31.1 Detailed Description
	24.31.2 Field Documentation
	24.31.2.1 imported_support

	24.32 hwloc_topology_support Struct Reference
	24.32.1 Detailed Description
	24.32.2 Field Documentation
	24.32.2.1 cpubind
	24.32.2.2 discovery
	24.32.2.3 membind
	24.32.2.4 misc

